Objectives

intel‘

At the completion of this module, you will be able to:

e Understand the intended purpose and usage models supported by
the VTune™ Performance Analyzer.

» Identify hotspots by drilling down through various sample views.
* Understand how sampling works

i e Use callgraph profiling to find hotspots
Basics of VTune™ Performance Analyzer Jrepil PIOTENT P

Intel Software College

Agenda VTune™ Performance Analyzer

What is the VTune™ Performance Analyzer? Helps you identify and characterize performance issues by:

Performance tuning concepts Collgctir?g performance data from the system running your
application.

Using the sampling collector Organizing and displaying the data in a variety of interactive views,

. from system-wide down to source code or processor instruction

How sampling works perspective.

Sampling Over Time Identifying potential performance issues and suggesting
improvements.

Call Graph 2

Supported Environments Local Performance Analysis

_ Intel® IA-32 Processors
Local and remote data collection o Microsoft Windows* operating systems
* Red Hat Linux*

Profile applications that are running on the system that has the)
e SuSE Linux

analyzer installed on it, or
Itanium® Family Processors
. Microsoft Windows operating systems
* Red Hat Linux
e SuSE Linux

Run profiling experiments on other systems that are running
VTune analyzer remote agents on them

For specific operating systems versions, see the release notes

Host/Target Environment Feature Overview

VTune™ Performance Analyzer supports remote data Sampling
collection

VTune™ Performance Analyzer installed on host system Call graph
Remote agent installed on target system

Host System Target System

Windows *IA-32 or Itanium®
operating system DR processor family

Connection

«Controls target *Windows or Linux*

«View results of data «Intel® PXA2xx
collection processors running
Windows CE*

VTune™ Analyzer Features and Usage Models VTune™ Analyzer Features and Usage Models

Sampling Over Time Views Show How Sampling
Data Changes Over Time

R Lo el e e

v 2 o

0 T S G A

VTune™ Analyzer Features and Usage Models VTune™ Analyzer Features and Usage Models

% Tunsi

Sampling Source View Displays Source Code o few e Call Graph Cél-léc-:ts and Displays Information

EXIICT IS

Annotated with Performance Data . About the Program Flow of the Application

BRI Er—
1

What Is a Hotspot?

Where in an application or system there is a significant amount
of activity
Where = address in memory => OS process => OS thread =>
executable file or module user function (requires symbols) =>
line of source code (requires symbols with line numbers) or
processor (assembly) instruction
Significant = activity that occurs infrequently probably does not have
much impact on system performance
Activity = time spent or other internal processor event

e Examples of other events: Cache misses, branch mispredictions, floating-
point instructions retired, partial register stalls, and so on.

Basics of VTune™ Performance Analyzer

Sampling Collector

Periodically interrupt the processor to obtain the execution
context
* Time-based sampling (TBS) is triggered by:
e Operating system timer services
e Every n processor clockticks
¢ Event-based sampling (EBS) is triggered by processor event counter
overflow

e These events are processor-specific, like L2 cache misses, branch
mispredictions, floating-point instructions retired, and so on

Basics of VTune™ Performanc

Sampling: The Statistical Method of Finding
Hotspots

The sampling collector

* Periodically interrupts the processor
e Time-based
e Event-based: Triggered by the occurrence of a certain number of
microarchitectural events
¢ Collects the execution context
Execution address in memory (CS:IP)
Operating system process and thread ID
Executable module loaded at that address
« If you have symbols for the module, post-processing can identify the
function or method at the memory address.

e Line numbers from the symbol file can direct you to the relevant line of
source code.

Basics of VTune™ Performance Analyzer

)

VTune™ Analyzer Sampling Collector

N =T e ICANT R CNEENIED
3 [hian 2 S e e 11X

Sampling Results
by Operating
System Process

This operating system
process that has the most
clockticks samples

VTune™ Analyzer Sampling Collector

Click here

215

T @wen - 0

for Over Time

Display only
Clockticks
sample data.

VTune™ Analyzer Sampling Collector

pineMosuise]

28)%

it e, e

o[[[oix]
< B

Iz

& Table View: Selection
Summary of line is

VTune™ Analyzer Sampling Collector

”Click here
to break
down by

CPU.

This view was filtered
by selecting only one
item from the process

pling Collector
o

Ba b o wbaux oncw|[8%)5

EIF

S5 [0 Frew e Gofl Do @0 | 1

|

[

Hotspot view of one
module for all 0S
processes and threads
grouped by function (or
method).

Basics of Viune™ Performant

VTune™ Analyzer Sampling Collector Analyzer Sampling Collector
. 2 =

ey v o1

v
R e — L AL LA Al e Sl

Click here
for

‘|disassembly

view.

VTune™ Analyzer Sampling Collector

Activity 1: Find the Hotspot

ELLN

Learn how to identify hotspots with the VTune™
analyzer.

Select Event

Red time intervals have
more samples in them.

Basics of VTune™

Three Key Benefits of Sampling

You do not have to modify your code.

e But DO compile/link with symbols and line numbers.

e But DO make release builds with optimizations.

Sampling is system-wide.

* Not just YOUR application.

* You can see activity in operating system code, including drivers.
Sampling overhead is very low.

* Validity is highest when perturbation is low.

e Overhead can be reduced further by turning off progress meters in
the user interface.

How else can you reduce sampling overhead?

How Many Samples Are Enough?

One million samples for a five-second run?

* Do you have enough samples for it to be statistically significant?
e How much overhead are you causing?

What if you only get 100 samples?

o Is your sample after number 1?

e Are you getting a good profile?

About 1,000 samples per second is a good
balance between significance and overhead

Basics of VTune

How Event-based Sampling (EBS) Works
Conceptual Diagram

Count D
OUnt Eown “Sample After”

Number

Underflow
to Zero

Interrupt CPU to Take Sample

Internal Interrupt Controller$

How do you choose a “Sample After” number?

Objective: 1,000 Samples Per Second

What is the sample after value for clockticks?
* Dependent upon CPU clock speed
¢ ANSWER: CPU clock speed in KHz

e If CPU clock speed = 1,400,000,000 Hz

e Sample after 1,400,000 clockticks

What is the sample after value for L2 cache read misses?

* It depends on how often you miss the L2 cache!

« Circular definition? Is not that what you are trying to determine?
e Make an intelligent guess! Estimate!

* More or less often than the clockticks?

e 10 times? 100 times? 1000 times?

Calibration

Sets the sample after value to get a reasonable number of
samples.

* ~1000 samples per second per logical CPU
Requires the workload to be run twice

Manual Calibration:

* Uncheck Calibrate Sample After value
* Found on Advanced Activity Configuration dialog

e Start with default value or an estimate

e Run a test

* Modify the sample after value and re-test

e Try to get about a 1000 samples per second per logical CPU

Sampling Over Time Usage Model

Collect sampling data

Select items of interest from either the process, thread, or
modules view

Click
Highlight region of interest
Click

Click to see process/thread/address histogram for time
region

Sampling Over Time

Shows how sample distributions change over time by process,
thread, or module

Zoom in on time regions

Useful for:
* Identifying time-variant performance characteristics
* Understanding thread behavior

Activity 2: Sampling Over Time

Learn how to use the Sampling Over Time view

Call Graph Profiling What Can You Profile?

Tracks the function entry and exit points of your code at run Win32 applications

fime Stand-alone Win32* DLLs
Uses binary instrumentation Stand-alone COM+ DLLs
Uses this data to determine program flow, critical functions and .

call sequences Java applications

- .
Not system-wide: Only profiles code in applications call path in :NETEgapplications
Ring 3 ASP.NET applications

Linux32* applications

Basics of VTune™ Performance Analyzer Basics of VTune™ Performance Analyzer

Call Graph View Call Graph Navigation Window

o e e T
[28% 8| wr uwane B [Fwmmom ECLL RN I
o< 90][
Tt (17 T (136 |Focton (375 s (1276 ol (316 [€ | . .
The red linos st e E ! ® Filter view by self time
s 5 . .
critical path. The critical
path is the most time-
consuming call path. It is
based on self time.

c
c
c
B

% 82|l 3 &][Shorio

Use the graph navigation
Bright orange nodes window for an overview of

indicate functions with the entire call graph.
the highest self time.

Call Graph Call List View

T auxoN ¥ [[*

Wk [Tweas 8] [Faneion 535 Tass (55 [Cois 35S Tora 6 Tt T (55 (Gl (55

e

e
e
P

Tirsac 50 _de_Uriack

120

Coses 12

Toeae £ mur
T 5

oo
Tiess £50_ GHOSCuSpeea

0
]
=

Fasis i
Ty

Tiveae E0 CrnPices

ol FngionCarit < Eege e Eige G [Toesd
ot o e

ol Funcion Caribiton [Esge e Eige G5 [Tresd

Ui

]
we o

0 T £
e T E9C
=T

Switch between call list
and call graph views

here.

Activity 3: Call Graph

Find the hotspot in gzip using call graph.

Basics of VTune

 Performance Analyzer

Call Graph Metrics

Performance Description
Metric

Self Time Total time in a function, excluding time spent in its children (includes
wait time)
Total Time Time measured from a function entry to exit point

Total Wait Time Time spent in a function and its children when the thread is blocked

Wait Time Time spent in a function when the thread is blocked (excludes
blocked time in its children)
Number of times the function is called

Basics of VTune™ Performance Analyzer

Sampling Versus Call Graph

Low overhead Higher overhead

System-wide Ring 3 only on your application call tree

System-wide address histogram Show function level hierarchy with call
counts, times, and the critical path

For function level drill-down, must have Must re-link with /£ixed:no, automatically
debug information instruments

Can sample based on time and other
processor events

Results are based on time

Basics of VTune™ Performance Analyzer

10

Java* and .NET* Applications

Provides performance data for both managed code and
unmanaged code

Gives insight into how managed code calls translate into
Win32* calls

Uses managed code profiling API and binary instrumentation

Leap ahead”

Basics of VTune™ Performance Analyzer
What’s Been Covered

You can use the different profilers in the VTune™ analyzer to

understand the different aspects of the performance of your
application.

Extra Slides

11

VTune™ Analyzer Features and Usage Models

Counter Monitor Tracks Operating System
Counters Over Time

PR

Pertormance Analyzer

Intel® Tuning Assistant

Identifies bottlenecks in:

e Pentium® 4, Pentium M®, Itanium® 2, and P
processors.

Uses EBS and Counter Monitor data.
Shows scaling differences between different runs.

Code Coach is still available but is not enabled by default.

VTune™ Analyzer Features and Usage Models

The Tuning Assistant Provides Tuning Advice
Based on Performance Data

Intel® Tuning Assistant

Thu Sep 05 23:48:04 2002]]

E

Instauctons Fetied(530)

6k Alissing Coniiets(530) 82
Bus Data Ready (This Frocesso) (11,

Stores Reled530) 24
Loads Retied(520]

DILB Load and Store Misses Reted!.
2ndLevel Cache Load Mises Relie.
Clockiicks(530)]

64K Alasing Conficts Pefomance I
Clocklicks per Instuctions Relied C.
Tine(530)

Basics of VTune™

‘Assistant are heuristic only.

Tuning Analysis for Sampling Results
[BNSHAH-P4HT] - Fri Dec 05 19:00:18

Top 5 Hotspot Insights
Time-Based Coding Pitfalls

* 64K Alissing: 0.95 sec pracessor time
S=enin unsigned long cal_pixel(struct tagComplex)
(RVA: 0x2620-0x2e31, process; mandelviune.exe,
rodule: mandelvtune.exe)

* 64K Alizsing: 043 sec processor time
a ckOffset(struct
tagCALC_MAND 2640-0x30db, process.
mandeiviine.exe, module: mandelvtune.exe)
* Blocked Store Forwards; 0.38 sec processor time.

module: mandelvtune.exe)

12

Intel® Tuning Assistant

VTune™ analyzer automatically selects events in the Sampling
wizard. .
rd 2%

Selectype of profing
 Windows"AWindows* CE/Lina”prfiing

€ Java" profing

€ NET* pofing

-~ One sampling un with mininl advice:
opplcaionie Pl on)

9 Automaticaly generale uring advice
i
velring -
£~ Afew sampling uns with some advice
{epplcation-and base micioarchiecture evel turing)
& Mony samping uns vith more sdvice
{esplcaion- and mictoarchtecure-evel uring)

Seect pe.
the samping colctor baced on our selecion.

Lab Activity 3: Getting Tuning Advice

Learn how to get processor-specific tuning advice

Intel® Tuning Assistan

T uxe W[5][Fx W
e T

Tuning Analysis for Sampiing Resus
[BSHAR PAHT] F Dec 05 19,001 18
2005

Top 5 Hotspot

For more
detail, click
hyperlink.

Windows* Command Line Interface

Collect sampling data from the command line.

Useful for integrating performance data collection into your
automated regression testing.

View the data in the VTune™ Performance Analyzer or export
as ASCII text.

Invoke by typing “vtl” at the command line.

13

Windows* Command Line Interface

Creates hidden project structure

To create an activity: vtl create [activity name] + options
To run an activity: vtl run [activity name]

To view activities type: vtl show

To view results of a particular activity type: vtl view
[activityname: :result] [options]

To delete the entire project: vtl delete -all

To delete a specific activity: vtl delete <activity name>

Windows* Command Line Interface Help

For general command line arguments: vtl -help
For sampling command line arguments and events:
vtl -help -c sampling

For in depth help and examples go to: Start->Programs-
>Intel® VTune™ Performance Analyzer->Help for the
Command Line

Windows* Command Line Interface
Examples

Sample on clockticks and instructions retired and launch app
matrix.exe:

vtl activity al -c sampling —app matrix.exe run
See the clocktick hotspots in matrix.exe:

vtl view al::rl -hf -mn matrix.exe
See the number of samples in each module system wide:

vtl al::rl view —modules

Lab Activity 4:
Using the Windows* Command Line Interface

Learn how to collect sampling data from the command line

14

Call Graph Advanced Configuration

Set instrumentation levels.
¢ Helps control overhead

Select which functions are instrumented.
* Helps control overhead

Basics of VTune™ Performance Analyzer

Instrumentation Levels

Instrumentation Level | Description

All Functions Every function in the module is
instrumented.

Custom You can specify which functions are
instrumented

Export Every function in the module’s export table
is instrumented.

Minimal The module is instrumented but no data is
collected for it.

Basics of VTune™ Performance Analyzer

Debug Info
Required?

Call Graph Advanced Options

Configure Call Graph

This is the instrumented
module status grid.

Click here to set module
instrumentation levels.

Oiiginal location

Instrumentation Status Instumentalion evel | Modue Type Debuginio

c\sdS9elpase\sdi eve

Max instumentaton levek Al unctons [User request]

Instumentalion Messages:

Add

\od93_c_sd39_release.exe [t

|

Not Instumented

Launching Mode:
Applcaion o Launch:

Automatic:
c\sdS9elease\sd3 ene

e

More Advanced Call Graph Options

Cache directory location

This is useful for long runs
and very large
applications. If you do not
set this, the machine
might run low on memory.

Allow call graph to
instrument COM
interfaces.

Call Graph Advanced Options

- Default instrumentation level

UserEXEs
UserDLLs
System DLLs

Al functions v
[All functions
Expots v

I™ Limi collecton buffer size to [5571 =] KB per thiead.

[V Enable COM tracing

Set as defaul

3 Cancel

@)

Basics of VTune™ Performance Ana

15

Function Selection

" Function Selection - [c:\windows\system32tkernel32. dl]
Click here to enable or £ Z !

4 5 : Tnstument | Furcion
disable instrumentation AclivelehetCr
cdbond,

Addatom
AddConsaledliash,

AddConsaleAlias
AddLocalAlemateComputerNamed.
‘AddLocalARemateComputerhlameh/
AddRetActClx

AddvectoredE xceptonHander
AlocatelserPhysicaPages
AllocConsole

AreFieApisANS|
AssignProcessTolobDbject
AttachConsole

Backupead

BackupSeek.

Backupiite
BaseCheckAppeompatCache
BaseCleanupAppcompalCache
BaseCleanupAppcompalCacheSupport
BaseDunpéppcompaiCache
BaseFlushAoocomoaCache

Lab Activity 6:
Using Sampling and Call Graph Together

Optimize an application (linpack) using sampling and call graph

Use Sampling and Call Graph Together

Use sampling to find which functions have hotspots.

Use call graph to find out who is calling these functions.

Sampling and Call Graph Have Different
Hotspots?

Self time includes blocked time.

Event-based sampling (EBS) and time-based sampling (TBS) do
not include blocked time in functions (this usually appears in
processor.sys).

Hotspots should be the same for self time - wait time (this is
non-blocked self time).

16

What Counter Monitor Does

Collects hardware and software performance counter data
¢ Windows* Perfmon* counters
¢ Performance DLL SDK

Correlate counter data with sampling data

Performance DLL SDK

SDK for creating custom performance counters that can be
used by counter monitor

Example: performance counter that measures the transactions
per second for a server application

Performance DLL SDK

SDK for creating custom performance counters that can be
used by counter monitor

Available on the Intel® web site

Example: performance counter that measures the transactions
per second for a server application

Click to highlight different El

counter data in the graph. L.

e v

17

To Correlate Sampling Data

Click the highlight icon and highlight
a time slice by dragging over
the graph from left to right.

Click on the drill icon.

You should now see the sampling
data for that time slice.

Courter Values (s

Tine (Miliseconds)

Basics of VTune™ Performance Analyzer

Trigger API

Allows you to create your own mechanism to programmatically
trigger performance counter data collection

Example: collect counter monitor data every time a frame is
rendered

0 100 20 W0 40 S0 B0 700 A0 S0 1000 1100 13

Lab Activity 7: Counter Monitor

Use counter monitor to analyze gzip

Basics of VTune™ Performance Analyzer

18

