

Module Number: MC325_1_0

Threading for Performance with
Intel® Threading Building Blocks

Lab Document

April 2008

Revision 1.0

Intel® Academic Community

Time Required Seventy-five minutes

Objectives In this lab, you will practice writing threaded code using Intel®
Threading Building Blocks.

At the successful completion of these lab activities, you will be able
to:

• Apply the TBB parallel_for and parallel_reduce generic algorithms
for loop parallel computations

• Generate a recursive execution tree of tasks that are scheduled by
the TBB task scheduler

• Use Intel Threading Building blocks concurrent containers and
scalable memory allocation

Intel® Academic Community

2 © April 2008 Intel® Corporation

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

Threading for Performance with Intel® Threading Building Blocks

© April 2008 Intel® Corporation 3

Contents
Activity 1: Using parallel_for ... 5

Build and Run Serial Program ... 5
Modify Serial Program to use Intel TBB parallel_for ... 5

Activity 2: Using parallel_reduce... 6
Build and Run Serial Program ... 6
Modify Serial Program to use Intel TBB parallel_reduce 6

Activity 3: Generating Recursive Tasks.. 8
Modify, Build, and Run Threaded Program .. 8

Activity 4: Using the concurrent_hash_map Container ...10
Modify, Build, and Run Threaded Application..10

Activity 5: Using Scalable Memory Allocators ..12
Build and Run Serial Program ..12
Modify Program to use Intel TBB scalable_allocator ...12

Intel® Academic Community

4 © April 2008 Intel® Corporation

Revision History

Document
Number

Revision
Number

Description Revision Date

MC325_1_0 1.0 Initial release. April 2008

Note: On Windows platforms, if you experience link errors, try switching the configuration
between “win32” and “x64” and relinking. Depending on the library available on your
system, there may be compatibility issues that could be cleared up by matching the
library version to the compiled code

§

Threading for Performance with Intel® Threading Building Blocks

© April 2008 Intel® Corporation 5

Activity 1: Using parallel_for

Time Required Fifteen minutes

Objective Modify a serial matrix multiplication code to do computations in
parallel through the Intel TBB parallel_for generic algorithm.

The application generates two NxN matrices and then does a matrix multiplication on
these two matrices. The code contains two separate matrix multiplication calls: one in
serial and one in parallel (though the parallel version initially calls the serial function).
The two calls are timed in order to see if the parallel version (when run on a multi-
core processor) will run in less time than the serial version.

Build and Run Serial Program
1. Locate and change to the 01 Matrix Multiply directory. You should find Visual

Studio Solution and project files and a source file, mxm_serial.cpp, in this
directory.

2. Double-click on the solution icon and examine the source file.

3. Be sure the Release configuration is selected and build the executable binary.

4. After successfully compiling and linking, run the executable.

This can be done from the Visual Studio IDE by selecting the “Start without
Debugging” command (CTRL+F5). The output reports a serial and a parallel
time, that should be close to each other, and a computed speed up of the parallel
over the serial time.

Modify Serial Program to use Intel TBB
parallel_for
1. Modify the ParallelMxM function to perform the matrix multiplication in parallel

using Intel TBB

a. Create a Body class and define the operator() to perform multiplications
across a range of index values. At what loop level should the parallelism
be implemented?

b. Replace original body of the ParallelMxM function with an execution(s) of
parallel_for using your defined Body class and the TBB defined
blocked_range.

2. Compile and debug the application. Once you have a clean compilation, run the
parallel executable.

What was the speedup of the parallel version? ___________________________

Intel® Academic Community

6 © April 2008 Intel® Corporation

Activity 2: Using parallel_reduce

Time Required Twenty minutes

Objective Modify a numerical integration code to do computations in parallel and
collect a computed reduction through the Intel TBB parallel_reduce
generic algorithm.

The application computes an approximation of pi (3.1415926…) through numerical
integration using the midpoint rectangle rule. Thus, for a given number of steps
between 0.0 and 1.0, the function f(x) = 4.0 / (1 + x*x) is evaluated, which
corresponds to the height of the rectangles. The sum of all the rectangle heights is
computed and this is multiplied by the inverse of the number of steps (width of
rectangles) to compute pi.

The computation is timed in order to see if the parallel version (when run on a multi-
core processor) will run in less time than the serial version.

Build and Run Serial Program
1. Locate and change to the 02 Numerical Integration directory. You should find

Visual Studio Solution and project files and a source file, pi.cpp, in this directory.

2. Double-click on the solution icon and examine the source file.

3. Be sure the Release configuration is selected and build the executable binary.

4. After successfully compiling and linking, run the executable. This can be done
from the Visual Studio IDE by selecting the “Start without Debugging” command
(CTRL+F5).

What is the serial time of the application? _______________________

Modify Serial Program to use Intel TBB
parallel_reduce
1. Modify the application to perform the repeated computations of the function being

integrated in parallel using Intel TBB. Each task created will compute a separate,
local copy of the sum of rectangle heights that need to be gathered and summed
(reduced) in to the final global sum.

a. Create a Body class and define the operator() to perform function
computations across a range of index values. You will also need to define
a split (to initialize the local sum) and a join method (to combine two
local sum values) in order to use the parallel_reduce.

Threading for Performance with Intel® Threading Building Blocks

© April 2008 Intel® Corporation 7

b. Replace original body of the for-loop computations with a call to
parallel_reduce using your defined Body class and the TBB defined
blocked_range.

2. Compile and debug the application. Once you have a clean compilation, run the
parallel executable.

What is the execution time of the parallel version? _____________________

What was the speedup of the parallel version? ________________________

Intel® Academic Community

8 © April 2008 Intel® Corporation

Activity 3: Generating Recursive Tasks

Time Required Fifteen minutes

Objective Modify a partially parallelized binary tree traversal application. The
traversal is done in parallel by creating recursive of TBB tasks for each
branch of the tree.

Modify, Build, and Run Threaded Program
1. Locate and change to the 03 recursive_tasks directory.

a. The original.h file contains the SerialTreeTraversal function, which
implements serial tree traversal. The nodes of the tree can be processed
independently. The task scheduler interface that Intel(R) Threading
Buidling Blocks (Intel(R) TBB) provides naturally supports recursive
parallelism.

b. The TODO.h contains an incomplete an implementation of the
MyRecursiveTask::execute method. The goal of this exercise is to learn
the basic elements of the task scheduler interface and complete the
implementation of MyRecursiveTask::execute method.

2. Review the serial implementation of the recursive tree traversal algorithm
(original.h).

3. Open TODO.h and find the implementation of MyRecursiveTask::execute method
- this is a body of TBB task.

4. Complete the code that processes the "right" tree.

There are a number of changes that need to be applied to the serial
implementation to make it work with TBB, but they still look similar:

a. The recursion will not change; it stops when the tree is empty.

b. Because the task spawns new children, there is a variable "count" that
contains the number of new children tasks.

c. The new children tasks process "left" and "right" sub-trees. (This section is
very similar to the section in the serial version.) There is a complete
example how a new task is created to process the "left" sub-tree:
tbb::task::allocate_child method is used to allocate the memory for
the child task, added to the list of tasks, and the task counter is
incremented.

Threading for Performance with Intel® Threading Building Blocks

© April 2008 Intel® Corporation 9

d. When all tasks are created and the task counter is equal to the number of
children + 1, the method tbb::task::spawn_and_wait_for_all is called
to spawn the tasks from the list.

5. Open main.cpp and find the function "void improved()". Its implementation
demonstrates how a parallel tree traversal should be initialized:

• It first creates root_task calling tbb::task::allocate_root method.

• Then, root_task is spawned. This function returns when all children tasks
of root_task are finished.

6. Build and run the application.

Does the version using the TBB task scheduler interface perform better?

Note: The file "solution.h" contains the complete implementation for this exercise. If you
would like to test it, just uncomment the line '#include "solution.h"' in main.cpp.

Intel® Academic Community

10 © April 2008 Intel® Corporation

Activity 4: Using the concurrent_hash_map Container

Time Required Fifteen minutes

Objective Modify a partially parallelized string counting application. The counts
for strings are kept in the associative container mapping strings to the
number of occurrences seen.

Modify, Build, and Run Threaded Application
1. Locate and change to the 04 concurrent_hash_map directory.

a. The original.h file contains an implementation of a function object for
counting the occurrences of strings - class CountStringsLocked. Strings are
stored in the array. The associative STL container map is used to map strings
to integer counters: each individual parallel task executing
CountStringsLocked::operator() will search for the string in the map and
increment its counter.

Although this class uses the STL map method in a manner that permits many
tasks to run in parallel, it is not thread-safe. A global lock (e.g. critical section)
must be used to protect the map from concurrent access and modifications.
Only one task can access the table at a time, and creates a performance
bottleneck.

However, multiple threads can safely search or modify the table concurrently if
they access different parts of the data container. Intel® Threading Building
Blocks (Intel® TBB) provides a container that is concurrency friendly --
tbb::concurrent_hash_map which uses local locks. If threads modify different
parts of the container, they don't block competing tasks for the lock.

b. The TODO.h file contains an implementation of CountStringsNoLocks class
which counts strings occurrences using tbb::concurrent_hash_map. The goal
of the exercise is to modify the body of CountStringsNoLocks::operator()
with tbb::concurrent_hash_map, thus avoiding use of a global lock.

c. Within the main.cpp source file, tbb::parallel_for is used to count the
occurences of strings as parallelized task. Each parallel task (body of
CountStrings*::operator()) is assigned an independent sub-range of the array
Data. You can play with the problem size by changing the number of the
strings in array. The Intel(R) TBB version of the algorithm doesn't use a global
lock; all of the locks are local. It is expected to perform better than the
version that uses global lock to protect concurrent modifications of STL map:
all modifications of STL map are serial, while many modifications of
tbb::oncurrent_hash_map are parallel.

Threading for Performance with Intel® Threading Building Blocks

© April 2008 Intel® Corporation 11

2. Open TODO.h and search for MyHashCompare structure. This structure is a required
parameter to tbb::concurrent_hash_map template class. It defines hashing and
comparison operations for user's type. The method "equal" will return true if the 2
keys are equal, and the method "hash" will generate the corresponding value for
the key.

3. Modify the attributes of the CountStringsNoLocks class - CRITICAL_SECTION is not
needed because tbb::concurrent_hash_map doesn't require global
synchronization.

4. Modify the body of CountStringsNoLocks::operator():

• Remove calls to critical section API

• Create the accessor object: "ConcurrentStringTable::accessor a;". The
constructor of this object will acquire a local lock, and destructor will release
this lock at the end of the code block

• Use the method tbb::concurrent_hash_map::insert to access the table
element key that is equal to the string from the array (*p)

• Now "a" points to the table element of interest. Each table element is
std::pair where a->first is a key and a->second is the corresponding
value. Increment a->second to count this occurrence of the string *p.

5. Build and run the application.

Does the version using the TBB container perform better? __________________

Note: The file "solution.h" contains the complete implementation for this exercise. If you
would like to test it, just uncomment the line '#include "solution.h"' in main.cpp.

Intel® Academic Community

12 © April 2008 Intel® Corporation

Activity 5: Using Scalable Memory Allocators

Time Required Ten minutes

Objective Modify a parallelized complete binary tree construction and traversal
application to use scalable memory allocator within Intel TBB.

The application constructs a complete binary tree of given depth and traverses the
tree. During the construction phase, half of the tree is done serially and the other half
is done in parallel. After the full tree is constructed, a serial and a parallel traversal of
the tree (summing up the values stored at each node) are run, one after the other. All
four of these phases (serial construction, parallel construction, serial traversal, parallel
traversal) are timed and the times are reported upon completion. The initial code
uses the default “new” memory allocation method for each node in the construction
phases.

Build and Run Serial Program
1. Locate and change to the 05 Scalable Allocator directory. You should find

Visual Studio Solution and project files and several source files in this directory.

2. Double-click on the solution icon and examine the main.cpp source file.

3. Be sure the Release configuration is selected and build the executable binary.

4. After successfully compiling and linking, run the executable. This can be done
from the Visual Studio IDE by selecting the “Start without Debugging” command
(CTRL+F5). The output reports a serial and a parallel construction time and a
serial and a parallel traversal time.

What is the serial construction time? _____________

What is the parallel construction time? _____________

What is the serial traversal time? _____________

What is the parallel traversal time? _____________

Modify Program to use Intel TBB
scalable_allocator
1. Modify the allocate_node method to allocate a new TreeNode object by using the

scallable_allocator allocate() method.

2. Compile and debug the application. Once you have a clean compilation, run the
parallel executable.

Threading for Performance with Intel® Threading Building Blocks

© April 2008 Intel® Corporation 13

What is the serial construction time? _____________

What is the parallel construction time? _____________

What is the serial traversal time? _____________

What is the parallel traversal time? _____________

What was the speedup of the new version? _____________

