
Project 2
• Part I Open MP
 Problem 1 (Data Parallelism): The code from the last assignment

models a sparse matrix vector multiply (updated in sparse_matvec.c).
The matrix is sparse in that many of its elements are zero. Rather
than representing all of these zeros which wastes storage, the code
uses a representation called Compressed Row Storage (CRS), which only
represents the nonzeros with auxiliary data structures to keep track
of their location in the full array.

 Given youwrite.c, develop an OpenMP implementation of this code for 4
threads. You will also need to modify the initialization code as
described below, and add timer functions. You will need to evaluate the
three different scheduling mechanisms, static, dynamic and guided, and
for two different chunk sizes of your choosing.

 I have provided three input matrices, sm1.txt, sm2.txt2 and sm3.txt3,
which were generated from the MatrixMarket (see
http://math.nist.gov/MatrixMarket/). The format for these is a sorted
coordinate representation (row, col, value) and will need to be
converted to CRS. Measure the execution time for the sequential code
and all three parallel versions, all three data set sizes and both chunk
sizes.

You will turn in the code, and a brief README file with the 21 different
timings and an explanation of which strategies performed best and why.

09/24/2010 CS4961 4

Project 2, cont.
• Part I Open MP, cont.
Problem 2 (Task Parallelism): Producer-consumer codes
represent a common form of a task parallelism where one task is
“producing” values that another thread “consumes”. It is often
used with a stream of data to implement pipeline parallelism.
 The program prodcons.c implements a producer/consumer
sequential application where the producer is generating array
elements, and the consumer is summing up their values. You
should use OpenMP parallel sections to implement this producer-
consumer model. You will also need a shared queue between the
producer and consumer tasks to hold partial data, and
synchronization to control access to the queue. Create two
parallel versions: producing/consuming one value at a time, and
producing/consuming 128 values at a time.
 Measure performance of the sequential code and the two
parallel implementations and include these measurements in your
README file.

09/24/2010 CS4961 5

Project 2, cont.
• Part II Thread Building Blocks
As an Academic Alliance member, we have access to Intel

assignments for ThreadBuildingBlocks. We will use the
assignments from Intel, with provided code that needs to be
modified to use TBB constructs. You will turn in just your
solution code.

Problem 3 (Problem 1 in TBB.doc, Using parallel_for)
 Summary: Parallelize “mxm_serial.cpp”

Problem 4 (Problem 3 in TBB.doc, Using recursive tasks)
 Summary: Modify implementation in rec_main.cpp
 All relevant files prepended with rec_ to avoid conflict.
Problem 5 (Problem 4 in TBB.doc, Using the concurrent_hash_map

container)
 Summary: Modify implementation in chm_main.cpp
 All relevant files prepended with chm_ to avoid conflict.

09/24/2010 CS4961 6

Project 2, cont. Using OpenMP
• You can do your development on any machines, and use

compilers available to you. However, the final
measurements should be obtained on the quadcore
systems in lab5. Here is how to invoke OpenMP for
gcc and icc.

-  gcc: gcc –fopenmp prodcons.c
-  icc: icc –openmp prodcons.c

09/24/2010 CS4961 7

