
9/22/09

1

09/22/2010 CS4961

CS4961 Parallel Programming 

Lecture 9:  
Task Parallelism in OpenMP 

Mary Hall 
September 22, 2009  

1

Administrative
• Programming assignment 1 is posted (after class)
• Due, Tuesday, September 22 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 prog1 <gzipped tar file>”
• Mailing list set up: cs4961@list.eng.utah.edu

09/22/2010 CS4961 2

Today’s Lecture
• Go over questions on Proj1
• Review of OpenMP Data Parallelism
• Discussion of Task Parallelism in Open MP 2.x and 3.0
• Sources for Lecture:

- OpenMP Tutorial by Ruud van der Pas
 http://openmp.org/mp-documents/ntu-vanderpas.pdf
- OpenMP 3.0 specification (May 2008):
 http://www.openmp.org/mp-documents/spec30.pdf

09/22/2010 CS4961 3

Using Intel Software on VS2008
•  File -> New Project (C++)
•  Right Click Project or Project -> Intel Compiler -> Use Intel Compiler
•  Project -> Properties -> C/C++ -> General -> Suppress Startup Banner =

No
•  Project -> Properties -> C/C++ -> Optimization -> Maximize Speed (/O2)
•  Project -> Properties -> C/C++ -> Optimization -> Enable Intrinsic

Functions (/Oi)
•  Project -> Properties -> Code Generation -> Runtime Library ->

Multithreaded DLL (/MD)
•  Project -> Properties -> Code Generation -> Enable Enhanced

Instruction Set = Streaming SIMD Extensions 3 (/arch:SSE3)
•  Project -> Properties -> Command Line -> Additional Options -> Add /

Qvec-report:3
•  Click Apply
•  Your command line options should look like
 /c /O2 /Oi /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D

"_UNICODE" /D "UNICODE" /EHsc /MD /GS /arch:SSE3 /fp:fast /
Fo"Debug/" /W3 /ZI /Qvec-report:3

409/22/2010 CS4961

9/22/09

2

Project 1 Assignment
• PART I
• Each of the files t1.c, t2.c, t3.c, t4.c and t5.c from

the website cannot be vectorized by the ICC
compiler. Your assignment is to produce the
equivalent but vectorizable nt1.c, nt2.c, nt3.c, nt4.c
and n5t.c. To determine whether or not the compiler
has vectorized a loop in the code, look at the output
of the compiler that results from the flag –vec-
report3. If it says: “remark: LOOP WAS
VECTORIZED.”, then you have succeeded! Hints:
There are several reasons why the above examples
cannot be vectorized. In some cases, the compiler is
concerned about the efficiency of the vectorized
code. This may be because of the cost of alignment,
concerns about exceeding the register capacity
(there are only 8 128-bit registers on most SSE3-
supporting platforms!) or the presence of data
dependences. In other cases, there is concern about
correctness, due to aliasing.

09/22/2010 CS4961 5

Project 1 Assignment, cont.
• PART II

The code example youwrite.c is simplified from a sparse matrix-
vector multiply operation used in conjugate gradient. In the
example, the compiler is able to generate vectorizable code, but
it must deal with alignment in the inner loop. In this portion, we
want you to be a replacement for the compiler and use the
intrinsic operations found in Appendix C (pp. 832-844) of the
document found at:
http://developer.intel.com/design/pentiumii/manuals/
243191.htm. The way this code will be graded is from looking at
it (no running of the code this time around), so it would help if
you use comments to describe the operations you are
implementing. It would be a good idea to test the code you
write, but you will need to generate some artificial input and
compare the output of the vectorized code to that of the
sequential version.

09/22/2010 CS4961 6

Examples from Assignment
T2.c:
 maxval = 0.;
 for (i=0; i<n; i++) {
 a[i] = b[i] + c[i];
 maxval = (a[i] > maxval ? a[i] : maxval);
 if (maxval > 1000.0) break;
 }

T3.c:
 for (i=0; i<n; i++) {
 a[i] = b[i*4] + c[i];
}

09/22/2010 CS4961 7

Examples from Assignment
T4.c:
 int start = rand();
 for (j=start; j<n; j+=2) {
 for (i=start; i<n; i+=2) {
 a[i][j] = b[i][j] + c[i][j];
 a[i+1][j] = b[i+1][j] + c[i+1][j];

 a[i][j+1] = b[i][j+1] + c[i][j+1];
 a[i+1][j+1] = b[i+1][j+1] + c[i+1][j+1];
 }
 }
T5.c:
 for (i=0; i<n; i++) {
 t = t + abs(t-i);
 a[i] = t* b[i] + c[i];
 }
09/22/2010 CS4961 8

9/22/09

3

Examples from Assignment
Youwrite.c:

 for (i=0; i<n; i++) {
 scanf("%f %f %d\n", &a[i], &x[i], &colstr[i]);
 }

 for (i=0; i<n; i++) {
 t[i] = 0.0;
 }

 for (j=0; j<n; j++) {
 for (k = colstr[j]; k<colstr[j+1]-1; k++)
 t[k] = t[k] + a[k] * x[j];
 }
}

09/22/2010 CS4961 9

OpenMP:
Prevailing Shared Memory Programming Approach

• Model for parallel programming
• Shared-memory parallelism
• Portable across shared-memory architectures
• Scalable
• Incremental parallelization
• Compiler based
• Extensions to existing programming languages

(Fortran, C and C++)
- mainly by directives
-  a few library routines

See http://www.openmp.org
09/17/2010 CS4961

A Programmer’s View of OpenMP
• OpenMP is a portable, threaded, shared-memory

programming specification with “light” syntax
-  Exact behavior depends on OpenMP implementation!
-  Requires compiler support (C/C++ or Fortran)

• OpenMP will:
- Allow a programmer to separate a program into serial regions

and parallel regions, rather than concurrently-executing
threads.

- Hide stack management
-  Provide synchronization constructs

• OpenMP will not:
-  Parallelize automatically
- Guarantee speedup
-  Provide freedom from data races

09/17/2010 CS4961

OpenMP Summary
• Work sharing

-  parallel, parallel for, TBD
-  scheduling directives: static(CHUNK), dynamic(), guided()

• Data sharing
-  shared, private, reduction

• Environment variables
- OMP_NUM_THREADS, OMP_SET_DYNAMIC,
OMP_NESTED, OMP_SCHEDULE

• Library
-  E.g., omp_get_num_threads(), omp_get_thread_num()

09/22/2010 CS4961 12

9/22/09

4

09/17/2010 CS4961

Summary of Previous Lecture
• OpenMP, data-parallel constructs only

- Task-parallel constructs next time

• What’s good?
- Small changes are required to produce a parallel program from

sequential
- Avoid having to express low-level mapping details
-  Portable and scalable, correct on 1 processor

• What is missing?
- No scan
- Not completely natural if want to write a parallel code from

scratch
- Not always possible to express certain common parallel

constructs
-  Locality management
-  Control of performance

Conditional Parallelization
if (scalar expression)

09/22/2010 CS4961 14

#pragma omp parallel if (n > threshold) \
shared(n,x,y) private(i) {
#pragma omp for
for (i=0; i<n; i++)
 x[i] += y[i];
} /*-- End of parallel region --*/

Review:
 parallel
 for
 private
 shared

 Only execute in parallel if expression evaluates to true
 Otherwise, execute serially

Locks
• Simple locks:

- may not be locked if already in a locked state

• Nestable locks:
- may be locked multiple times by the same thread before

being unlocked

09/22/2010 CS4961 15

Simple locks
omp_init_lock
omp_destroy_lock
omp_set_lock
omp_unset_lock

Nestable locks
omp_init_nest_lock
omp_destroy_nest_lock
omp_set_nest_lock
omp_unset_nest_lock

OpenMP sections directive

#pragma omp parallel
{
#pragma omp sections
#pragma omp section

 {{ a=...;
 b=...; }

#pragma omp section
 { c=...;
 d=...; }

#pragma omp section
 { e=...;
 f=...; }

#pragma omp section
 { g=...;
 h=...; }

} /*omp end sections*/
} /*omp end parallel*/

9/22/09

5

Parallel Sections, Example

09/22/2010 CS4961 17

#pragma omp parallel default(none)\
shared(n,a,b,c,d) private(i) {
 #pragma omp sections nowait {
 #pragma omp section
 for (i=0; i<n; i++)
 d[i] = 1.0/c[i];
 #pragma omp section
 for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;
 } /*-- End of sections --*/
} /*-- End of parallel region

SINGLE and MASTER constructs
• Only one thread in team executes code enclosed
• Useful for things like I/O or initialization
• No implicit barrier on entry or exit

• Similarly, only master executes code

09/22/2010 CS4961 18

#pragma omp single {
 <code-block>
}

#pragma omp master {
 <code-block>
}

Motivating Example: Linked List Traversal

•  How to express with parallel for?
- Must have fixed number of iterations
-  Loop-invariant loop condition and no early exits

• Convert to parallel for
- A priori count number of iterations (if possible)

09/22/2010 CS4961 19

........
while(my_pointer) {
 (void) do_independent_work (my_pointer);
 my_pointer = my_pointer->next ;
} // End of while loop
........

OpenMP 3.0: Tasks!

09/22/2010 CS4961 20

my_pointer = listhead;
#pragma omp parallel {
 #pragma omp single nowait {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer) {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
} // End of parallel region - implied barrier here

firstprivate = private and copy initial value from global variable
lastprivate = private and copy back final value to global variable

9/22/09

6

Summary
• Completed coverage of OpenMP

-  Locks
-  Conditional execution
- Single/Master
- Task parallelism

-  Pre-3.0: parallel sections
- OpenMP 3.0: tasks

• Next time:
- OpenMP programming assignment

09/22/2010 CS4961 21

