
9/17/09 

1 

09/17/2010
 CS4961


CS4961 Parallel Programming 

Lecture 8:  
Introduction to Threads and Data 

Parallelism in OpenMP  

Mary Hall 
September 17, 2009  

Administrative 
• Programming assignment 1 is posted (after class) 
• Due, Tuesday, September 24 before class 

- Use the “handin” program on the CADE machines   
- Use the following command:  

      “handin cs4961 prog1 <gzipped tar file>” 
• Mailing list set up: cs4961@list.eng.utah.edu 

09/17/2010
 CS4961


Project 1 Assignment 
• PART I  
• Each of the files t2.c, t3.c, t4.c and t5.c from the 

website cannot be vectorized by the ICC compiler. 
Your assignment is to produce the equivalent but 
vectorizable nt2.c, nt3.c, nt4.c and n5t.c.  To 
determine whether or not the compiler has 
vectorized a loop in the code, look at the output of 
the compiler that results from the flag –vec-report3.  
If it says: “remark: LOOP WAS VECTORIZED.”, then 
you have succeeded!  Hints: There are several 
reasons why the above examples cannot be 
vectorized.  In some cases, the compiler is concerned 
about the efficiency of the vectorized code.  This 
may be because of the cost of alignment, concerns 
about exceeding the register capacity (there are only 
8 128-bit registers on most SSE3-supporting 
platforms!) or the presence of data dependences.  In 
other cases, there is concern about correctness, due 
to aliasing.     

09/17/2010
 CS4961


Project 1 Assignment, cont. 
• PART II  

The code example youwrite.c is simplified from a sparse matrix-
vector multiply operation used in conjugate gradient.  In the 
example, the compiler is able to generate vectorizable code, but 
it must deal with alignment in the inner loop.  In this portion, we 
want you to be a replacement for the compiler and use the 
intrinsic operations found in Appendix C (pp. 832-844) of the 
document found at: 
http://developer.intel.com/design/pentiumii/manuals/
243191.htm.   The way this code will be graded is from looking at 
it (no running of the code this time around), so it would help if 
you use comments to describe the operations you are 
implementing.  It would be a good idea to test the code you 
write, but you will need to generate some artificial input and 
compare the output of the vectorized code to that of the 
sequential version.   

09/17/2010
 CS4961




9/17/09 

2 

Things to Remember in this Assignment 
• What are the barriers to “vectorization”? 

-  Correctness 
- Dependences 

-  Performance 
- Alignment 
-  Control flow 
-  Packing to get data contiguous 

09/17/2010
 CS4961


Today’s Lecture 
• Brief Overview of POSIX Threads 
• Data Parallelism in OpenMP 

-  Expressing Parallel Loops 
-  Parallel Regions (SPMD) 
- Scheduling Loops 
- Synchronization 

• Sources of material: 
- Jim Demmel and Kathy Yelick, UCB 
- Allan Snavely, SDSC 
-  Larry Snyder, Univ. of Washington 

09/17/2010
 CS4961


Programming with Threads 
Several Thread Libraries 
• PTHREADS is the Posix Standard 

- Solaris threads are very similar 
- Relatively low level 
- Portable but possibly slow 

• OpenMP is newer standard 
- Support for scientific programming on shared 

memory architectures 

• P4 (Parmacs) is another portable package 
- Higher level than Pthreads 
- http://www.netlib.org/p4/index.html 

09/17/2010
 CS4961


Overview of POSIX Threads 
• POSIX: Portable Operating System Interface for 

UNIX 
-  Interface to Operating System utilities 

• PThreads: The POSIX threading interface 
- System calls to create and synchronize threads 
- Should be relatively uniform across UNIX-like OS 

platforms 

• PThreads contain support for 
-  Creating parallelism 
- Synchronizing 
- No explicit support for communication, because shared 

memory is implicit; a pointer to shared data is passed to a 
thread 

09/17/2010
 CS4961




9/17/09 

3 

Forking Posix Threads 

•  thread_id  is the thread id or handle (used to halt, etc.) 
•  thread_attribute various attributes 

-  standard default values obtained by passing a NULL pointer 

•  thread_fun the function to be run (takes and returns void*) 
•  fun_arg an argument can be passed to thread_fun when it starts 
•  errorcode will be set nonzero if the create operation fails 

Signature: 
    int pthread_create(pthread_t *,  
                       const pthread_attr_t *, 
                       void * (*)(void *),    
                       void *); 
Example call:  
  errcode = pthread_create(&thread_id;    
      &thread_attribute 
                           &thread_fun; &fun_arg); 

09/17/2010
 CS4961


Simple Threading Example 

void* SayHello(void *foo) { 
  printf( "Hello, world!\n" ); 
  return NULL; 
} 

int main() { 
  pthread_t threads[16]; 
  int tn; 
  for(tn=0; tn<16; tn++) { 
    pthread_create(&threads[tn], NULL, SayHello, NULL); 
  } 
  for(tn=0; tn<16 ; tn++) { 
    pthread_join(threads[tn], NULL); 
  } 
  return 0; 
} 

Compile using gcc –lpthread 

But overhead of thread creation is nontrivial 
SayHello should have a significant amount of work  

09/17/2010
 CS4961


Shared Data and Threads 
• Variables declared outside of main are shared 
• Object allocated on the heap may be shared (if 

pointer is passed) 
• Variables on the stack are private: passing pointer to 

these around to other threads can cause problems 

• Often done by creating a large “thread data” struct 
-  Passed into all threads as argument 
- Simple example: 

    char *message = "Hello World!\n";      
    pthread_create( &thread1, 
     NULL, 
     (void*)&print_fun, 
     (void*) message); 

09/17/2010
 CS4961


Posix Thread Example 
#include <pthread.h> 
void print_fun( void *message ) { 
    printf("%s \n", message); 
} 

main() { 
    pthread_t thread1, thread2; 
    char *message1 = "Hello"; 
    char *message2 = "World"; 

    pthread_create( &thread1, 
     NULL, 
     (void*)&print_fun, 
     (void*) message1); 
    pthread_create(&thread2, 
     NULL, 
     (void*)&print_fun, 
     (void*) message2); 
    return(0); 
} 

Compile using gcc –lpthread 

Note: There is a race 
condition in the print 
statements 

09/17/2010
 CS4961




9/17/09 

4 

Synchronization: Creating and Initializing a 
Barrier 

• To (dynamically) initialize a barrier, use code similar 
to this (which sets the number of threads to 3): 
pthread_barrier_t b; 
pthread_barrier_init(&b,NULL,3); 

• The second argument specifies an object attribute; 
using NULL yields the default attributes. 

• To wait at a barrier, a process executes: 
pthread_barrier_wait(&b); 

• This barrier could have been statically initialized by 
assigning an initial value created using the macro    
PTHREAD_BARRIER_INITIALIZER(3). 

09/17/2010
 CS4961


Mutexes (aka Locks) in POSIX Threads 
• To create a mutex: 
  #include <pthread.h> 

  pthread_mutex_t amutex = PTHREAD_MUTEX_INITIALIZER; 

  pthread_mutex_init(&amutex, NULL); 

• To use it: 
  int pthread_mutex_lock(amutex); 

  int pthread_mutex_unlock(amutex); 

• To deallocate a mutex 
  int pthread_mutex_destroy(pthread_mutex_t *mutex); 

• Multiple mutexes may be held, but can lead to deadlock: 
         thread1           thread2 

         lock(a)           lock(b) 

         lock(b)           lock(a) 
09/17/2010
 CS4961


Summary of Programming with Threads 
• POSIX Threads are based on OS features 

-  Can be used from multiple languages (need appropriate header) 
-  Familiar language for most of program 
- Ability to shared data is convenient 

• Pitfalls 
- Data race bugs are very nasty to find because they can be 

intermittent  
- Deadlocks are usually easier, but can also be intermittent 

• OpenMP is commonly used today as a simpler 
alternative, but it is more restrictive 

09/17/2010
 CS4961


OpenMP Motivation 

• Thread libraries are hard to use 
-  P-Threads/Solaris threads have many library calls for 

initialization, synchronization, thread creation, condition 
variables, etc. 

-  Programmer must code with multiple threads in mind 

• Synchronization between threads introduces a new 
dimension of program correctness 

• Wouldn’t it be nice to write serial programs and 
somehow parallelize them “automatically”? 

- OpenMP can parallelize many serial programs with relatively 
few annotations that specify parallelism and independence 

-  It is not automatic: you can still make errors in your 
annotations 

09/17/2010
 CS4961




9/17/09 

5 

OpenMP:  
Prevailing Shared Memory Programming Approach 

• Model for parallel programming 
• Shared-memory parallelism 
• Portable across shared-memory architectures 
• Scalable 
• Incremental parallelization 
• Compiler based 
• Extensions to existing programming languages 

(Fortran, C and C++) 
- mainly by directives 
-  a few library routines 

See http://www.openmp.org 
09/17/2010
 CS4961


A Programmer’s View of OpenMP 
• OpenMP is a portable, threaded, shared-memory 

programming specification with “light” syntax 
-  Exact behavior depends on OpenMP implementation! 
-  Requires compiler support (C/C++ or Fortran) 

• OpenMP will: 
- Allow a programmer to separate a program into serial regions 

and parallel regions, rather than concurrently-executing 
threads. 

- Hide stack management 
-  Provide synchronization constructs 

• OpenMP will not: 
-  Parallelize automatically 
- Guarantee speedup 
-  Provide freedom from data races 

09/17/2010
 CS4961


Open MP Example: Parallel Loop 
• All pragmas begin: #pragma  
• Example: Convert 32-bit RGB image to 8-bit gray scale 
•  ||ism is “element-wise” … for correctness, each element 

must be independent (work sharing) 
• Preprocessor calculates loop bounds for each thread 

directly from serial source 

#pragma omp parallel for  
for (i=0; i < numPixels; i++) {        
    pGrayScaleBitmap[i] = (unsigned BYTE)     
     (pRGBBitmap[i].red   * 0.299 +  pRGBBitmap[i].green *  
     0.587 +  pRGBBitmap[i].blue  * 0.114);  
}  
09/17/2010
 CS4961


Another OpenMP example 

Pragmas as modest extension to existing language 
     * Parallelism (SPMD, task and data parallel) 
     * Data sharing (shared, private, reduction) 
     * Work sharing or scheduling 
     * Locks and critical sections 

09/17/2010
 CS4961




9/17/09 

6 

OpenMP Execution Model 

•  Fork-join model of parallel execution 

•  Begin execution as a single process (master thread) 

•  Start of a parallel construct: 
-  Master thread creates team of threads 

•  Completion of a parallel construct: 
-  Threads in the team synchronize -- implicit barrier 

•  Only master thread continues execution 

•  Implementation optimization:  
-  Worker threads spin waiting on next fork 

fork 

join 

09/17/2010
 CS4961


OpenMP Execution Model 

09/17/2010
 CS4961


OpenMP directive format C 
• Pragmas, format 

#pragma omp directive_name [ clause [ clause ] ... ] new-
line 

•  Conditional compilation 


#ifdef _OPENMP

block, 
e.g., printf(“%d avail.processors\n”,omp_get_num_procs());



#endif 

•  Case sensitive 

•  Include file for library routines 


#ifdef _OPENMP



#include <omp.h>



#endif


09/17/2010
 CS4961


OpenMP for directive 
Syntax: 

   #pragma omp for [ clause [ clause ] ... ] new-line 

  for-loop 

clause can be one of the following: 
 shared (list)


 private( list) 

 reduction( operator: list) 
 schedule( type [ , chunk ] )

 nowait (C/C++: on #pragma omp for) 

#pragma omp parallel private(f) { 
 f=7; 

#pragma omp for 
  for (i=0; i<20; i++) 
  a[i] = b[i] + f * (i+1); 

} /* omp end parallel */ 
09/17/2010
 CS4961




9/17/09 

7 

Limitations and Semantics 
• Not all “element-wise” loops can be ||ized  

     #pragma omp parallel for  
       for (i=0; i < numPixels; i++) {} 

-  Loop index: signed integer  
- Termination Test: <,<=,>,=> with loop invariant int  
-  Incr/Decr by loop invariant int; change each iteration 
-  Count up for <,<=; count down for >,>=  
-  Basic block body: no control in/out except at top  

• Threads are created and iterations divvied up; 
requirements ensure iteration count is predictable  

09/17/2010
 CS4961


Programming Model – Loop Scheduling 
• schedule clause determines how loop iterations are 

divided among the thread team 
- static([chunk]) divides iterations statically between 

threads 
-  Each thread receives [chunk] iterations, rounding as 

necessary to account for all iterations 
- Default [chunk] is ceil( # iterations / # threads ) 

- dynamic([chunk]) allocates [chunk] iterations per 
thread, allocating an additional [chunk] iterations when a 
thread finishes 

-  Forms a logical work queue, consisting of all loop iterations  
- Default [chunk] is 1 

- guided([chunk]) allocates dynamically, but [chunk] is 
exponentially reduced with each allocation 

09/17/2010
 CS4961


Loop scheduling 

2 (2) 

09/17/2010
 CS4961


OpenMP parallel region construct 
• Block of code to be executed by multiple threads in 

parallel 
• Each thread executes the same code redundantly 

(SPMD) 
- Work within work-sharing constructs is distributed among 

the threads in a team 

• Example with C/C++ syntax 

#pragma omp parallel [ clause [ clause ] ... ] new-line 
  structured-block 

•  clause can include the following: 
private (list) 
shared (list) 

09/17/2010
 CS4961




9/17/09 

8 

Programming Model – Data Sharing 
•  Parallel programs often employ 

two types of data 
-  Shared data, visible to all 

threads, similarly named 
-  Private data, visible to a single 

thread (often stack-allocated) 

•  OpenMP: 
•  shared variables are shared 
•  private variables are private 
•  Default is shared 
•  Loop index is private 

•  PThreads: 
•  Global-scoped variables are 

shared 
•  Stack-allocated variables are 

private 

// shared, globals 

int bigdata[1024]; 

void* foo(void* bar) { 

  // private, stack 

  int tid; 

  /* Calculation goes 

     here */ 

} 

int bigdata[1024]; 

void* foo(void* bar) { 

  int tid; 

  #pragma omp parallel \ 

   shared ( bigdata ) \ 

   private ( tid ) 

  { 

    /* Calc. here */ 

  }  

} 

OpenMP environment variables 
OMP_NUM_THREADS


  sets the number of threads to use during execution 
 when dynamic adjustment of the number of threads is enabled, the 

value of this environment variable is the maximum number of 
threads to use 

  For example,  
 
setenv OMP_NUM_THREADS 16 [csh, tcsh] 
 
export OMP_NUM_THREADS=16 [sh, ksh, bash] 
OMP_SCHEDULE


  applies only to do/for and parallel do/for directives that 
have the schedule type RUNTIME


  sets schedule type and chunk size for all such loops 
  For example, 
 
setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh] 
 
export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

09/17/2010
 CS4961


OpenMP runtime library, Query Functions 
omp_get_num_threads: 

Returns the number of threads currently in the team executing the 
parallel region from which it is called 

int omp_get_num_threads(void);


omp_get_thread_num: 

Returns the thread number, within the team, that lies between 0 and 
omp_get_num_threads()-1, inclusive. The master thread of the 
team is thread 0


int omp_get_thread_num(void);


09/17/2010
 CS4961


OpenMp Reductions 
• OpenMP has reduce  

sum = 0;  
#pragma omp parallel for reduction(+:sum)       
for (i=0; i < 100; i++)     {          
sum += array[i];  
} 

• Reduce ops and init() values:  
+   0         bitwise  &  ~0      logical &   1  
-   0         bitwise  |   0      logical |   0  
*   1         bitwise  ^   0  

09/17/2010
 CS4961




9/17/09 

9 

OpenMP Synchronization 
• Implicit barrier 

- At beginning and end of parallel constructs 
- At end of all other control constructs 
-  Implicit synchronization can be removed with nowait 

clause 

• Explicit synchronization 
- critical

- atomic  

09/17/2010
 CS4961


OpenMP critical directive 
• Enclosed code 

– executed by all threads, but 

– restricted to only one thread at a time 
#pragma omp critical [ ( name ) ] new-line 

    structured-block 

• A thread waits at the beginning of a critical region until no 
other thread in the team is executing a critical region with 
the same name. 

• All unnamed critical directives map to the same 
unspecified name. 

09/17/2010
 CS4961


OpenMP critical 
C / C++: cnt = 0; 
f=7; 
#pragma omp parallel 
{ 
#pragma omp for 
 for (i=0; i<20; i++) { 
  if (b[i] == 0) { 

#pragma omp critical 
   cnt ++; 
  } /* endif */ 
 a[i] = b[i] + f * (i+1); 
 } /* end for */ 

} /*omp end parallel */ 

09/17/2010
 CS4961
 09/17/2010
 CS4961


Summary of Lecture 
• OpenMP, data-parallel constructs only 

- Task-parallel constructs next time 

• What’s good? 
- Small changes are required to produce a parallel program from 

sequential 
- Avoid having to express low-level mapping details 
-  Portable and scalable, correct on 1 processor 

• What is missing? 
- No scan 
- Not completely natural if want to write a parallel code from 

scratch 
- Not always possible to express certain common parallel 

constructs 
-  Locality management 
-  Control of performance 


