
09/15/2010
 CS4961

CS4961 Parallel Programming 

Lecture 7:  
“Fancy” Solution to HW 2 

Mary Hall 
September 15, 2009  

1

Administrative
• Programming assignment 1 is posted (after class)
• Due, Tuesday, September 22 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 prog1 <gzipped tar file>”
• Mailing list set up: cs4961@list.eng.utah.edu

09/15/2010
 CS4961
 2

Using Intel Software on VS2008
•  File -> New Project (C++)
•  Right Click Project or Project -> Intel Compiler -> Use Intel Compiler
•  Project -> Properties -> C/C++ -> General -> Suppress Startup Banner =

No
•  Project -> Properties -> C/C++ -> Optimization -> Maximize Speed (/O2)
•  Project -> Properties -> C/C++ -> Optimization -> Enable Intrinsic

Functions (/Oi)
•  Project -> Properties -> Code Generation -> Runtime Library ->

Multithreaded DLL (/MD)
•  Project -> Properties -> Code Generation -> Enable Enhanced

Instruction Set = Streaming SIMD Extensions 3 (/arch:SSE3)
•  Project -> Properties -> Command Line -> Additional Options -> Add /

Qvec-report:3
•  Click Apply
•  Your command line options should look like
 /c /O2 /Oi /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D

"_UNICODE" /D "UNICODE" /EHsc /MD /GS /arch:SSE3 /fp:fast /
Fo"Debug/" /W3 /ZI /Qvec-report:3

3

Project 1 Assignment
• PART I
• Each of the files t1.c, t2.c, t3.c, t4.c and t5.c from

the website cannot be vectorized by the ICC
compiler. Your assignment is to produce the
equivalent but vectorizable nt1.c, nt2.c, nt3.c, nt4.c
and n5t.c. To determine whether or not the compiler
has vectorized a loop in the code, look at the output
of the compiler that results from the flag –vec-
report3. If it says: “remark: LOOP WAS
VECTORIZED.”, then you have succeeded! Hints:
There are several reasons why the above examples
cannot be vectorized. In some cases, the compiler is
concerned about the efficiency of the vectorized
code. This may be because of the cost of alignment,
concerns about exceeding the register capacity
(there are only 8 128-bit registers on most SSE3-
supporting platforms!) or the presence of data
dependences. In other cases, there is concern about
correctness, due to aliasing.

09/15/2010
 CS4961
 4

Project 1 Assignment, cont.
• PART II

The code example youwrite.c is simplified from a sparse matrix-
vector multiply operation used in conjugate gradient. In the
example, the compiler is able to generate vectorizable code, but
it must deal with alignment in the inner loop. In this portion, we
want you to be a replacement for the compiler and use the
intrinsic operations found in Appendix C (pp. 832-844) of the
document found at:
http://developer.intel.com/design/pentiumii/manuals/
243191.htm. The way this code will be graded is from looking at
it (no running of the code this time around), so it would help if
you use comments to describe the operations you are
implementing. It would be a good idea to test the code you
write, but you will need to generate some artificial input and
compare the output of the vectorized code to that of the
sequential version.

09/15/2010
 CS4961
 5

Homework 2, Problem 1 Solution
Problem 1 (#10 in text on p. 111):
The Red/Blue computation simulates two interactive flows.

An n x n board is initialized so cells have one of three
colors: red, white, and blue, where white is empty, red
moves right, and blue moves down. Colors wrap around on
the opposite side when reaching the edge.

In the first half step of an iteration, any red color can
move right one cell if the cell to the right is unoccupied
(white). On the second half step, any blue color can move
down one cell if the cell below it is unoccupied. The case
where red vacates a cell (first half) and blue moves into it
(second half) is okay.

Viewing the board as overlaid with t x t tiles (where t
divides n evenly), the computation terminates if any tile’s
colored squares are more than c% one color. Use Peril-L
to write a solution to the Red/Blue computation.

09/15/2010
 CS4961
 6

Steps for Solution
Step 1. Partition global grid for n/t x n/t processors
Step 2. Initialize half iteration (red) data structure
Step 3. Iterate within each t x t tile until convergence

(guaranteed?)
 Step 4. Compute new positions of red elts & copy blue
elts
 Step 5. Communicate red boundary values
 Step 6. Compute new positions of blue elts

 Step 7. Communicate blue boundary values
 Step 8. Check locally if DONE

09/15/2010
 CS4961
 7

Steps 1, 3 & 8. Partition Global Grid and
Iterate

int grid[n,n], lgrid[t,t];
boolean gdone = FALSE;
int thr = (n/t)*(n/t);

forall (index in(0..thr-1))
 int myx = (n/t) * index/(n/t);
 int myy =(n/t) * (index % (n/t));
 lgrid[] = localize(grid[myx,myy]);
 while (!gdone) {
 // Steps 3-7: compute new locations and determine if done
 if (Bsum > threshold || Wsum > threshold || Rsum > threshold)

 exclusive { gdone = TRUE; }
 barrier;
 }

09/15/2010
 CS4961
 8

Step 2: Initialization of lr the first time
int lr[t+2,t+2], lb[t+2,t+2];
// copy from lgrid and grid to lr
lr[1:t,1:t] = lgrid[0:t-1,0:t-1];
lr[0,1:t] = grid[myx,myy:myy+t-1];
lr[t,1:t+1] = … ; lr[1:t,0] =…; lr[1:t,t+1] = ;
lr[0,0] = lr[0,t+1] = lr[t+1,0] = lr[t+1,t+1] = W; // don’t care about these

09/15/2010
 CS4961
 9

grid

lgrid
lr

Boundary is
ghost cells

t

Steps 4 & 5: Compute new positions of red
elts and Communicate Boundary Values

int lb[t+1,t+1];
lb[0:t+1,0:t+1] = W;
for (i=0; i<t+1; i++) {
 for (j=0; j<t+1; j++) {
 if (lr[i,j] == B) lb[i,j] = B;
 if (lr[i,j] == R && lr[i+1,j] = W) lb[i+1,j] = R;
 else lb[i,j] = R;
 }
}
barrier;
lgrid[0:t-1,0:t-1] = lb[1:t,1:t]; //update local portion of global ds
barrier;
//copy leftmost ghosts from grid
if (myx-1 >= 0) lb[0,1:t] = grid[myx-1, 0:t-1];
else lb[0,1:t] = grid[n-1,0:t-1];

09/15/2010
 CS4961
 10

Steps 6 & 7: Compute new positions of
blue elts and communicate Boundary Values

int lb[t+1,t+1];
lr[0:t+1,0:t+1] = W;
for (i=0; i<t+1; i++) {
 for (j=0; j<t+1; j++) {
 if (lb[i,j] == R) then lr[i,j] = R;

 if (lb[i,j] == B && lb[i,j+1] = W) lr[i,j+1] = B;
 else lr[i,j] = B;
 }
}
barrier;
lgrid[0:t-1,0:t-1] = lr[1:t,1:t]; //update local portion of global ds
barrier;
//copy top ghosts from grid
if (myy-1 >= 0) lr[1:t,0] = grid[0:t-1,myy-1];
else lr[1:t,0] = grid[0:t-1,0];

09/15/2010
 CS4961
 11

Step 8: Compute locally if DONE
for (i=1; i<t+1; i++) {
 for (j=1; j<t+1; j++) {
 if (lr[i,j] == R) then Rsum++;
 if (lr[i,j] == B) then Bsum++;
 if (lr[i,j] == W) then Wsum++;
 }

}

09/15/2010
 CS4961
 12

Next Time
• Parallel algorithms
• Introduction to threads

09/15/2010
 CS4961
 13

