
9/16/09

1

09/10/2010 CS4961

CS4961 Parallel Programming 

Lecture 6:  
SIMD Parallelism in SSE-3 

Mary Hall 
September 10, 2009  

1

Administrative
• Programming assignment 1 to be posted Friday, Sept.

11
• Due, Tuesday, September 22 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 prog1 <gzipped tar file>”
• Mailing list set up: cs4961@list.eng.utah.edu
• Sriram office hours:

- MEB 3115, Mondays and Wednesdays, 2-3 PM

09/10/2010 CS4961 2

Homework 2
Problem 1 (#10 in text on p. 111):
The Red/Blue computation simulates two interactive flows.

An n x n board is initialized so cells have one of three
colors: red, white, and blue, where white is empty, red
moves right, and blue moves down. Colors wrap around on
the opposite side when reaching the edge.

In the first half step of an iteration, any red color can
move right one cell if the cell to the right is unoccupied
(white). On the second half step, any blue color can move
down one cell if the cell below it is unoccupied. The case
where red vacates a cell (first half) and blue moves into it
(second half) is okay.

Viewing the board as overlaid with t x t tiles (where t
divides n evenly), the computation terminates if any tile’s
colored squares are more than c% one color. Use Peril-L
to write a solution to the Red/Blue computation.

09/10/2010 CS4961 3

Homework 2, cont.
Problem 2:
For the following task graphs,
determine the following:

(1)  Maximum degree of
concurrency.
(2)  Critical path length.
(3)  Maximum achievable
speedup over one process
assuming an arbitrarily large
number of processes is
available.
(4)  The minimum number of
processes needed to obtain
the maximum possible
speedup.
(5)  The maximum achievable
speedup if the number of
processes is limited to (a) 2
and (b) 8.

09/10/2010 CS4961 4

9/16/09

2

Today’s Lecture
• SIMD for multimedia extensions (SSE-3 and Altivec)
• Sources for this lecture:

-  Jaewook Shin
http://www-unix.mcs.anl.gov/~jaewook/slides/vectorization-
uchicago.ppt

-  Some of the above from “Exploiting Superword Level Parallelism
with Multimedia Instruction Sets”, Larsen and Amarasinghe (PLDI
2000).

• References:
-  “Intel Compilers: Vectorization for Multimedia Extensions,”

http://www.aartbik.com/SSE/index.html
-  Programmer’s guide
 http://developer.intel.com/design/processor/manuals/

248966.pdf
-  List of SSE intrinsics
 http://developer.intel.com/design/pentiumii/manuals/

243191.htm
09/10/2010 CS4961 5

Scalar vs. SIMD in Multimedia Extensions

09/10/2010 CS4961 6

09/10/2010 CS4961 7

Multimedia Extensions
•  At the core of multimedia extensions

-  SIMD parallelism
-  Variable-sized data fields:
 Vector length = register width / type size

0 127
V31

. . .

1 2 3 4 5 6 13 12 11 10 9 8 7 16 15 14

1

1

2

2

3

3

4

4

5 6 7 8

V0
V1
V2
V3
V4
V5

Sixteen 8-bit Operands

Eight 16-bit Operands

Four 32-bit Operands

Example: AltiVec

WIDE UNIT

09/10/2010 CS4961 8

Multimedia / Scientific Applications

• Image
- Graphics : 3D games, movies
-  Image recognition
- Video encoding/decoding : JPEG, MPEG4

• Sound
-  Encoding/decoding: IP phone, MP3
- Speech recognition
- Digital signal processing: Cell phones

• Scientific applications
- Double precision Matrix-Matrix multiplication (DGEMM)
-  Y[] = a*X[] + Y[] (SAXPY)

9/16/09

3

09/10/2010 CS4961 9

Characteristics of Multimedia Applications
• Regular data access pattern

- Data items are contiguous in memory

• Short data types
-  8, 16, 32 bits

• Data streaming through a series of processing stages
- Some temporal reuse for such data streams

• Sometimes …
- Many constants
- Short iteration counts
-  Requires saturation arithmetic

Programming Multimedia Extensions
• Language extension

-  Programming interface similar to function call
-  C: built-in functions, Fortran: intrinsics
- Most native compilers support their own multimedia

extensions
- GCC: -faltivec, -msse2
- AltiVec: dst= vec_add(src1, src2);
- SSE2: dst= _mm_add_ps(src1, src2);
- BG/L: dst= __fpadd(src1, src2);
- No Standard !

• Need automatic compilation

09/10/2010 CS4961 10

Programming Complexity Issues
• High level: Use compiler

- may not always be successful

• Low level: Use intrinsics or inline assembly tedious
and error prone

• Data must be aligned,and adjacent in memory
- Unaligned data may produce incorrect results
- May need to copy to get adjacency (overhead)

• Control flow introduces complexity and inefficiency
• Exceptions may be masked

09/10/2010 CS4961 11 09/10/2010 CS4961 12

1. Independent ALU Ops

R = R + XR * 1.08327
G = G + XG * 1.89234
B = B + XB * 1.29835

R R XR 1.08327
G = G + XG * 1.89234
B B XB 1.29835

9/16/09

4

09/10/2010 CS4961 13

2. Adjacent Memory References

R = R + X[i+0]
G = G + X[i+1]
B = B + X[i+2]

R R
G = G + X[i:i+2]
B B

09/10/2010 CS4961 14

for (i=0; i<100; i+=1)
 A[i+0] = A[i+0] + B[i+0]

3. Vectorizable Loops

09/10/2010 CS4961 15

3. Vectorizable Loops

for (i=0; i<100; i+=4)

A[i:i+3] = B[i:i+3] + C[i:i+3]

for (i=0; i<100; i+=4)
 A[i+0] = A[i+0] + B[i+0]

A[i+1] = A[i+1] + B[i+1]
A[i+2] = A[i+2] + B[i+2]
A[i+3] = A[i+3] + B[i+3]

09/10/2010 16

4. Partially Vectorizable Loops

for (i=0; i<16; i+=1)
 L = A[i+0] – B[i+0]
 D = D + abs(L)

CS4961

9/16/09

5

09/10/2010 17

4. Partially Vectorizable Loops

for (i=0; i<16; i+=2)

L0
L1

= A[i:i+1] – B[i:i+1]

D = D + abs(L0)
D = D + abs(L1)

for (i=0; i<16; i+=2)
 L = A[i+0] – B[i+0]
 D = D + abs(L)

L = A[i+1] – B[i+1]
D = D + abs(L)

CS4961 09/10/2010 CS4961 18

Exploiting SLP with SIMD Execution
• Benefit:

- Multiple ALU ops → One SIMD op
- Multiple ld/st ops → One wide mem op

• Cost:
-  Packing and unpacking
-  Reshuffling within a register
- Alignment overhead

09/10/2010 CS4961 19

Packing/Unpacking Costs

C = A + 2
D = B + 3

C A 2
D B 3
= +

09/10/2010 CS4961 20

Packing/Unpacking Costs
• Packing source operands

-  Copying into contiguous memory

A A
B B A = f()

B = g()
C = A + 2
D = B + 3

C A 2
D B 3
= +

9/16/09

6

09/10/2010 CS4961 21

Packing/Unpacking Costs
• Packing source operands

-  Copying into contiguous memory

• Unpacking destination operands
-  Copying back to location

C C
D D

A = f()
B = g()
C = A + 2
D = B + 3
E = C / 5
F = D * 7

A A
B B

C A 2
D B 3
= +

09/10/2010 CS4961 22

Alignment
• Most multimedia extensions require aligned memory

accesses.
• Aligned memory access ?

- A memory access is aligned to a 16 byte boundary if the
address is a multiple of 16.

-  Ex) For 16 byte memory accesses in AltiVec, the last 4 bits
of the address are ignored.

09/10/2010 CS4961 23

Alignment Code Generation

• Aligned memory access
- The address is always a multiple of 16 bytes
- Just one superword load or store instruction

float a[64];
for (i=0; i<64; i+=4)
 Va = a[i:i+3];

0 16 32 48

…

09/10/2010 CS4961 24

Alignment Code Generation (cont.)

• Misaligned memory access
- The address is always a non-zero constant offset away from

the 16 byte boundaries.
- Static alignment: For a misaligned load, issue two adjacent

aligned loads followed by a merge.

float a[64];
for (i=0; i<60; i+=4)
 Va = a[i+2:i+5];

0 16 32 48

…

float a[64];
for (i=0; i<60; i+=4)
 V1 = a[i:i+3];
 V2 = a[i+4:i+7];
 Va = merge(V1, V2, 8);

9/16/09

7

• Statically align loop iterations

float a[64];

for (i=0; i<60; i+=4)

 Va = a[i+2:i+5];

float a[64];

Sa2 = a[2]; Sa3 = a[3];

for (i=2; i<62; i+=4)

 Va = a[i+2:i+5];
09/10/2010 CS4961 25 09/10/2010 CS4961 26

Alignment Code Generation (cont.)

• Unaligned memory access
- The offset from 16 byte boundaries is varying or not enough

information is available.
- Dynamic alignment: The merging point is computed during

run time.

float a[64];
for (i=0; i<60; i++)
 Va = a[i:i+3];

0 16 32 48

…

float a[64];
for (i=0; i<60; i++)
 V1 = a[i:i+3];
 V2 = a[i+4:i+7];
 align = (&a[i:i+3])%16;
 Va = merge(V1, V2, align);

09/10/2010 CS4961 27

SIMD in the Presence of Control Flow

for (i=0; i<16; i++)
 if (a[i] != 0)
 b[i]++;

for (i=0; i<16; i+=4){
 pred = a[i:i+3] != (0, 0, 0, 0);
 old = b[i:i+3];
 new = old + (1, 1, 1, 1);
 b[i:i+3] = SELECT(old, new, pred);
}

Overhead:
Both control flow paths are always executed !

09/10/2010 CS4961 28

An Optimization:
Branch-On-Superword-Condition-Code

for (i=0; i<16; i+=4){
 pred = a[i:i+3] != (0, 0, 0, 0);
 branch-on-none(pred) L1;
 old = b[i:i+3];
 new = old + (1, 1, 1, 1);
 b[i:i+3] = SELECT(old, new, pred);
 L1:
}

9/16/09

8

09/10/2010 CS4961 29

Control Flow
• Not likely to be supported in today’s commercial

compilers
-  Increases complexity of compiler
-  Potential for slowdown
-  Performance is dependent on input data

• Many are of the opinion that SIMD is not a good
programming model when there is control flow.

• But speedups are possible!

09/10/2010 CS4961 30

Nuts and Bolts
• What does a piece of code really look like?

for (i=0; i<100; i+=4)

A[i:i+3] = B[i:i+3] + C[i:i+3]

for (i=0; i<100; i+=4) {
 __m128 btmp = _mm_load_ps(float B[I]);

 __m128 ctmp = _mm_load_ps(float C[I]);
 __m128 atmp = _mm_add_ps(__m128 btmp, __m128 ctmp);
 void_mm_store_ps(float A[I], __m128 atmp);

}

09/10/2010 CS4961 31

Wouldn’t you rather use a compiler?
• Intel compiler is pretty good

-  icc –msse3 –vecreport3 <file.c>

• Get feedback on why loops were not “vectorized”
• First programming assignment

- Use compiler and rewrite code examples to improve
vectorization

- One example: write in low-level intrinsics

09/10/2010 CS4961

Summary of Lecture
• SIMD parallelism for multimedia extensions (SSE-3)

- Widely available
-  Portable to AMD platforms, similar capability on other platforms

• Parallel execution of
-  “Vector” or superword operations
- Memory accesses
-  Partially parallel computations
- Mixes well with scalar instructions

• Performance issues to watch out for
- Alignment of memory accesses
- Overhead of packing operands
-  Control flow

• Next Time:
- More SSE-3

32

