
9/3/09

1

09/03/2009 CS4961

CS4961 Parallel Programming 

Lecture 4:  
Data and Task Parallelism 

Mary Hall 
September 3, 2009  

1

Administrative
• Homework 2 posted, due September 10 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw2 <prob1file>”
• Mailing list set up: cs4961@list.eng.utah.edu
• Sriram office hours:

- MEB 3115, Mondays and Wednesdays, 2-3 PM

09/03/2009 CS4961 2

Going over Homework 1
• Problem 2:

-  Provide pseudocode (as in the book and class notes) for a
correct and efficient parallel implementation in C of the
parallel sums code, based on the tree-based concept in
slides 26 and 27 of Lecture 2. Assume that you have an
array of 128 elements and you are using 8 processors.

- Hints:
- Use an iterative algorithm similar to count3s, but use the tree

structure to accumulate the final result.
- Use the book to show you how to add threads to what we

derived for count3s.

• Problem 3:
- Now show how the same algorithm can be modified to find

the maximum element of an array. (problem 2 in text). Is
this also a reduction computation? If so, why?

09/03/2009 CS4961 3

Homework 2
Problem 1 (#10 in text on p. 111):

The Red/Blue computation simulates two interactive flows.
An n x n board is initialized so cells have one of three
colors: red, white, and blue, where white is empty, red
moves right, and blue moves down. Colors wrap around on
the opposite side when reaching the edge.
In the first half step of an iteration, any red color can
move right one cell if the cell to the right is unoccupied
(white). On the second half step, any blue color can move
down one cell if the cell below it is unoccupied. The case
where red vacates a cell (first half) and blue moves into it
(second half) is okay.
Viewing the board as overlaid with t x t tiles (where t
divides n evenly), the computation terminates if any tile’s
colored squares are more than c% one color. Use Peril-L
to write a solution to the Red/Blue computation.

09/03/2009 CS4961 4

9/3/09

2

Homework 2, cont.
Problem 2:
For the following task graphs,
determine the following:

(1)  Maximum degree of
concurrency.
(2)  Critical path length.
(3)  Maximum achievable
speedup over one process
assuming than an arbitrarily
large number of processes
is available.
(4)  The minimum number of
processes needed to obtain
the maximum possible
speedup.
(5)  The maximum achievable
speedup if the number of
processes is limited to (a) 2
and (b) 8.

09/03/2009 CS4961 5

Today’s Lecture

• Data parallel and task parallel constructs and how to
express them

• Peril-L syntax
- An abstract programming model based on C to be used to

illustrate concepts

• Task Parallel Concepts
• Sources for this lecture:

-  Larry Snyder,
http://www.cs.washington.edu/education/courses/
524/08wi/

- Grama et al., Introduction to Parallel Computing,
 http://www.cs.umn.edu/~karypis/parbook

09/03/2009 6CS4961

Brief Recap of Tuesday’s Lecture
• We looked at a lot of different kinds of
parallel architectures

- Diverse!

• How to write software for a moving hardware
target?

- Abstract away specific details
- Want to write machine-independent code

• Candidate Type Architecture (CTA) Model
- Captures inherent tradeoffs without details of

hardware choices
- Summary: Locality is Everything!

09/03/2009 CS4961 7

Candidate Type Architecture (CTA Model)

• A model with P
standard
processors, d
degree,λ latency

• Node ==
processor +
memory + NIC

- All memory is
associated with
a specific node!

• Key Property:
Local memory ref
is 1, global
memory isλ

09/03/2009 CS4961 8

9/3/09

3

Estimated Values for Lambda
• Captures inherent property that data locality
is important.

• But different values of Lambda can lead to
different algorithm strategies

09/03/2009 CS4961 9

Locality Rule
• Definition, p. 53:

- Fast programs tend to maximize the number of
local memory references and minimize the number
of non-local memory references.

• Locality Rule in practice
- It is usually more efficient to add a fair amount of

redundant computation to avoid non-local accesses
(e.g., random number generator example).

This is the most important thing you
need to learn in this class!

09/03/2009 CS4961 10

Conceptual: CTA for Shared Memory Architectures?

• CTA is not capturing global memory in SMPs
• Forces a discipline

- Application developer should think about locality
even if remote data is referenced identically to
local data!

- Otherwise, performance will suffer
- Anecdotally, codes written for distributed

memory shown to run faster on shared memory
architectures than shared memory programs

- Similarly, GPU codes (which require a partitioning
of memory) recently shown to run well on
conventional multi-core

09/03/2009 CS4961 11

Definitions of Data and Task Parallelism
• Data parallel computation:

- Perform the same operation to different items of
data at the same time; the parallelism grows with
the size of the data.

• Task parallel computation:
- Perform distinct computations -- or tasks -- at

the same time; with the number of tasks fixed,
the parallelism is not scalable.

• Summary
- Mostly we will study data parallelism in this class
- Data parallelism facilitates very high speedups;

and scaling to supercomputers.
- Hybrid (mixing of the two) is increasingly common

09/03/2009 CS4961 12

9/3/09

4

Parallel Formulation vs. Parallel Algorithm
• Parallel Formulation

- Refers to a parallelization of a serial algorithm.

• Parallel Algorithm
- May represent an entirely different algorithm than

the one used serially.

• In this course, we primarily focus on “Parallel
Formulations”.

09/03/2009 CS4961 13

Steps to Parallel Formulation
(refined from Lecture 2)

• Computation Decomposition/Partitioning:
-  Identify pieces of work that can be done concurrently
- Assign tasks to multiple processors (processes used

equivalently)

• Data Decomposition/Partitioning:
- Decompose input, output and intermediate data across

different processors

• Manage Access to shared data and synchronization:
-  coherent view, safe access for input or intermediate

data
UNDERLYING PRINCIPLES:
•  Maximize concurrency and reduce overheads due to

parallelization!
•  Maximize potential speedup!

09/03/2009 CS4961 14

Peril-L Notation
• This week’s homework was made more
difficult because we didn’t have a concrete
way of expressing the parallelism features
of our code!

• Peril-L, introduced as a neutral language for
describing parallel programming constructs

- Abstracts away details of existing languages
- Architecture independent
- Data parallel
- Based on C, for universality

• We can map other language features to
Peril-L features as we learn them

09/03/2009 CS4961 15

Peril-L Threads
• The basic form of parallelism is a thread
• Threads are specified in the following (data
parallel) way:

forall <int var> in (<index range spec>) {<body> }

• Semantics: spawn k threads each executing body

forall thID in (1..12) {

 printf("Hello, World, from thread %i\n", thID);

}
<index range spec> is any reasonable (ordered)
naming

09/03/2009 CS4961 16

9/3/09

5

Thread Model is Asynchronous (MIMD)
• Threads execute at their own rate
• The execution relationships among threads is
not known or predictable

• To cause threads to synchronize, we have
 barrier;
• Threads arriving at barriers suspend
execution until all threads in its forall
arrive there; then they’re all released

09/03/2009 CS4961 17 09/03/2009 CS4961 18

Common Notions of Task-Parallel Thread
Creation (not in Peril-L)

Memory Model in Peril-L
• Two kinds of memory: local and global

- Variables declared in a thread are local by default
- Any variable w/ underlined_name is global

• Names (usually indexes) work as usual
- Local variables use local indexing
- Global variables use global indexing

• Memory is based on CTA, so performance:
- Local memory reference are unit time
- Global memory references take λ time

09/03/2009 CS4961 19

Memory Read-Write Semantics
• Local Memory behaves like the RAM model
• Global memory

- Reads are concurrent, so multiple processors can
read a memory location at the same time

- Writes must be exclusive, so only one processor
can write a location at a time

- The possibility of multiple processors writing to a
location is not checked and if it happens the result
is unpredictable

09/03/2009 CS4961 20

9/3/09

6

Shared Memory or Distributed Memory?
• Peril-L is not a shared memory model because

- It distinguishes between local and global memory
costs … that’s why it’s called “global”

• Peril-L is not distributed memory because
- The code does not use explicit communication to

access remote data

• Peril-L is not a PRAM because
- It is founded on the CTA
- By distinguishing between local and global memory,

it distinguishes their costs
- It is asynchronous

09/03/2009 CS4961 21

Serializing Global Writes
• To ensure the exclusive write Peril-L has
 exclusive { <body> }

• As compared to a lock, this is an atomic block
of code.

• The semantics are that
- a thread can execute <body> only if no other

thread is doing so
- if some thread is executing, then it must wait for

access
- sequencing through exclusive may not be fair

09/03/2009 CS4961 22

Reductions (and Scans) in Peril-L

• Aggregate operations use APL syntax
- Reduce: <op>/<operand> for <op> in {+, *, &&, ||,

max, min}; as in +/priv_sum
- Scan: <op>\<operand> for <op> in {+, *, &&, ||, max,

min}; as in +\local_finds

• To be portable, use reduce & scan rather than
programming them
exclusive {count += priv_count; } WRONG
count = +/priv_count; RIGHT

Reduce/Scan Imply Synchronization
09/03/2009 CS4961 23

Peril-L Example: Try3 from Lecture 2

09/03/2009 CS4961 24

9/3/09

7

Connecting Global and Local Memory
• CTA model does not have a “global memory”.
Instead, global data is distributed across local
memories

• But #1 thing to learn is importance of locality.
Want to be able to place data current thread
will use in local memory

• Construct for data partitioning/placement
 localize();
• Meaning

- Return a reference to portion of global data
structure allocated locally (not a copy)

- Thereafter, modifications to local portion using
local name do not incur λ penalty

09/03/2009 CS4961 25

Scalable Parallel Solution using Localize

09/03/2009 CS4961 26

09/03/2009 CS4961

Summary of Lecture
• How to develop a parallel code

- Added in data decomposition

• Peril-L syntax

• Next Time:
- More on task parallelism and task decomposition
-  Peril-L examples
- Start on SIMD, possibly

27

