
12/3/09

1

L23: Parallel
Programming
Retrospective

December 3, 2009

Administrative
• Schedule for the rest of the semester

-  “Midterm Quiz” = long homework
- Return by Dec. 15

-  Projects
-  1 page status report due TODAY

–  handin cs4961 pstatus <file, ascii or PDF ok>
-  Poster session dry run (to see material) Dec. 8
-  Poster details (next slide)

• Mailing list: cs4961@list.eng.utah.edu

12/03/09

Poster Details
• I am providing:
•  Foam core, tape, push pins, easels

• Plan on 2ft by 3ft or so of material (9-12 slides)
• Content:

-  Problem description and why it is important
-  Parallelization challenges
-  Parallel Algorithm
- How are two programming models combined?
-  Performance results (speedup over sequential)

• Example

12/03/09

Outline
• Last New Topic: Transactional Memory
• General:

- Where parallel hardware is headed
- Where parallel software is headed
-  Parallel programming languages

• Sources for today’s lecture
- Transactional Coherence and Consistency, ASPLOS 2004,

Stanford University
- Vivek Sarkar, Rice University

12/03/09

12/3/09

2

Transactional Memory: Motivation
• Multithreaded programming requires:

- Synchronization through barriers, condition variables, etc.
- Shared variable access control through locks . . .

• Locks are inherently difficult to use
-  Locking design must balance performance and correctness

Coarse-grain locking: Lock contention Fine-grain locking:
Extra overhead, more error-prone

- Must be careful to avoid deadlocks or races in locking
- Must not leave anything shared unprotected, or program

may fail

• Parallel performance tuning is unintuitive
-  Performance bottlenecks appear through low level events

Such as: false sharing, coherence misses, …

• Is there a simpler model with good performance?
12/03/09

Using Transactions (Specifically TCC)
• Concept: Execute transactions all of the time
• Programmer-defined groups of instructions within a

program
 End/Begin Transaction Start Buffering Results
 Instruction #1
 Instruction #2 . . .
 End/Begin Transaction Commit Results Now (+ Start New
Transaction)

• Can only “commit” machine state at the end of each
transaction

- To Hardware: Processors update state atomically only at
a coarse granularity

- To Programmer: Transactions encapsulate and replace
locked “critical regions”

• Transactions run in a continuous cycle . . .
12/03/09

Transaction (TCC) Cycle
• Speculatively execute code and buffer
• Wait for commit permission

-  “Phase” provides commit ordering, if
necessary

-  Imposes programmer-requested order on
commits

- Arbitrate with other CPUs
• Commit stores together, as a block

-  Provides a well-defined write ordering
- To other processors, all instructions

within a transaction “appear” to execute
atomically at transaction commit time

-  Provides “sequential” illusion to
programmers Often eases parallelization
of code

-  Latency-tolerant, but requires high
bandwidth

• And repeat!
12/03/09

A Parallelization Example
• Simple histogram example

-  Counts frequency of 0–100% scores in a data array
- Unmodified, runs as a single large transaction (1 sequential

code region)

int* data = load_data();
int i, buckets[101];
for (i = 0; i < 1000; i++) {
 buckets[data[i]]++;
}
print_buckets(buckets);

12/03/09

12/3/09

3

A Parallelization Example
• t_for transactional loop

-  Runs as 1002 transactions (1 sequential + 1000 parallel,
ordered + 1 sequential)

- Maintains sequential semantics of the original loop

int* data = load_data();
int i, buckets[101];
t_for (i = 0; i < 1000; i++) {
 buckets[data[i]]++;
}
print_buckets(buckets);

12/03/09

Conventional Parallelization of example
• Conventional parallelization requires explicit locking

-  Programmer must manually define the required locks
-  Programmer must manually mark critical regions Even more

complex if multiple locks must be acquired at once
-  Completely eliminated with TCC!

int* data = load_data(); int i, buckets[101];
LOCK_TYPE bucketLock[101];
for (i = 0; i < 101; i++) LOCK_INIT(bucketLock[i]);
for (i = 0; i < 1000; i++) {
 LOCK(bucketLock[data[i]]);
 buckets[data[i]]++;
 UNLOCK(bucketLock[data[i]]);
 }
print_buckets(buckets);

12/03/09

Other Concepts: Coherence and Fault Tolerance
• Main idea:

-  Convenience of coarse-grain reasoning about parallelism and
data sharing

- Hardware/software takes care of synchronization details
- Well-suited to code with heavy use of locking

• If two transactions try to commit the same data?
• If a transaction fails to complete?

12/03/09

Compiler

My Research in this Space

... while freeing

programmers

from managing

low-level

details

(productivity).

Technology Application
Requirements

Achieve high
performance
by exploiting
architectural
features ...

Hardware Software

Architecture Programming
Model

Compiler-based optimization and auto-tuning

12/3/09

4

A Looming Software Crisis?
• Architectures are getting increasingly complex

- Multiple cores, deep memory hierarchies, software-
controlled storage, shared resources, SIMD
compute engines, heterogeneity, ...

• Performance optimization is getting more
important

- Today’s sequential and parallel applications may not
be faster on tomorrow’s architectures.

- Especially if you want to add new capability!
- Managing data locality even more important than

parallelism.

Complexity!

Exascale Software Challenges
• Exascale architectures will be fundamentally different

- Power management THE issue
- Memory reduction to .01 bytes/flop
- Hierarchical, heterogeneous

• Basic rethinking of the software “stack”
- Ability to express and manage locality and parallelism

for ~billion threads will require fundamental change
- Support applications that are forward scalable and

portable
- Managing power (although locality helps there) and

resilience requirements
Sarkar, Harrod and Snavely, “Software Challenges in Extreme Scale Systems,” SciDAC 2009, June,
2009. Summary of results from a DARPA study entitled, “Exascale Software Study,” (see
http://users.ece.gatech.edu/%7Emrichard/ExascaleComputingStudyReports/ECS_reports.htm)

Motivation: Lessons at the Extreme End

• HPC programmers are more willing than most to
suffer to get good performance

- But pain is growing with each new architecture
- And application base is expanding (e.g., dynamic,

graph-based applications)

• Government funding inadequate to make these
systems useable

• Therefore, best hope is to leverage commodity
solutions

- Also, an interesting and fertile area of research lies
in this intersection

Parallel Software Infrastructure Challenges

12/03/09 Slide source: Vivek Sarkar

12/3/09

5

• Overlap of requirements for petascale scientific
computing and mainstream multi-core embedded
and desktop computing.

• Many new and “commodity” application domains are
similar to scientific computing.

- Communication, speech, graphics and games, some
cognitive algorithms, biomedical informatics (& other
“RMS” applications)

• Importance of work with real applications (who is
your client?).

- Biomedical imaging, Molecular dynamics simulation,
Nuclear fusion, Computational chemistry, speech
recognition, knowledge discovery ...

Motivation: A Few Observations Where is compiler research going?

• Main research directions:
- Make parallel programming mainstream
- Write compilers capable of self-improvement [autotuners]
-  Performance models to support optimizations for parallel code
-  Enable development of software as reliable as an airplane
-  Enable system software that is secure at all levels
- Verify the entire software stack

Hall, Padua and Pingali, “Compiler Research: The Next Fifty Years,” CACM, Feb. 2009. Results
of an NSF Workshop entitled, “The Future of Compiler Research and Education,” held at USC/ISI
in Feb. 2007.

 Autotuning Research Themes

• Compiler-based performance tuning
- Use vast compute & storage resources to improve

performance
- Enumerate options, generate code, try, measure,

record (conceptually)

• Optimization and performance tuning built
from modular, understandable chunks

- Easier to bring up on new platforms
- Facilitates collaboration, moving the community

forward

A Systematic, Principled Approach!

se
ar

ch

st
ru

ct
ur

e

 20

Recent Research: Auto-Tuning “Compiler”

Batch
Compiler

code

input data

Traditional view:

Code
Translation

code

input data
(characteristics)

(Semi-)Autotuning Compiler:

search script(s)

transformation
script(s)

Experiments Engine

12/3/09

6

Collaborative Autotuning in PERI

HPC Toolkit (Rice)
ROSE (LLNL)

CHiLL (USC/ISI and Utah)
ROSE (LLNL)
Orio (Argonne) {

OSKI (LBNL)

Active Harmony (UMD)
GCO (UTK)

PerfTrack (LBNL, SDSC, RENCI)

Future Directions: New Architectures

Non-uniform cache
architectures (NUCA)
and memory controllers:
• Multi-core
architectures with
distributed L2 cache
• Co-locate data &
computation
• Manage data movement

New NSF Project: SHF:Small: Hardware/Software Management of Large Multi-Core Memory Hierarchies,
Rajeev Balasubramonian (PI) and Mary Hall (co-PI), Sept. 2009-August 2012.

 NVIDIA Recognizes University Of Utah As A Cuda Center
Of Excellence University of Utah is the Latest in a Growing
List of Exceptional Schools Demonstrating Pioneering
Work in Parallel (JULY 31, 2008—NVIDIA Corporation)

• CS6963: Parallel programming for GPUs
• Paper and poster at SAAHPC and other
work from class under submission
• Automatic CUDA code generation from
CHiLL

Nvidia Tesla system:
240 cores per chip,960 cores
per unit, 32 units!

Future Directions: New Architectures

