
12/1/09 

1 

L22: Parallel 
Programming 

Language Features 
(Chapel and 
MapReduce) 


December 1, 2009


Administrative 
• Schedule for the rest of the semester 

-  “Midterm Quiz” = long homework 
- Handed out over the holiday (Tuesday, Dec. 1) 
- Return by Dec. 15 

-  Projects  
-  1 page status report on Dec. 3  

–  handin cs4961 pdesc <file, ascii or PDF ok> 
-  Poster session dry run (to see material) Dec. 8 
-  Poster details (next slide) 

• Mailing list: cs4961@list.eng.utah.edu 

12/01/09 

Poster Details 
• I am providing: 
•  Foam core, tape, push pins, easels 

• Plan on 2ft by 3ft or so of material (9-12 slides) 
• Content: 

-  Problem description and why it is important 
-  Parallelization challenges 
-  Parallel Algorithm  
- How are two programming models combined? 
-  Performance results (speedup over sequential) 

12/01/09 

Outline 
• Global View Languages 
• Chapel Programming Language 
• Map-Reduce (popularized by Google) 
• Reading: Ch. 8 and 9 in textbook 
• Sources for today’s lecture 

-  Brad Chamberlain, Cray 
- John Gilbert, UCSB 

12/01/09 



12/1/09 

2 

Shifting Gears 
• What are some important features of parallel 

programming languages (Ch. 9)? 
-  Correctness 
-  Performance 
- Scalability 
-  Portability  

12/01/09 

And what about ease of programming? 

Global View Versus Local View 
• P-Independence 

-  If and only if a program always produces the same output on 
the same input regardless of number or arrangement of 
processors 

• Global view  
•  A language construct that preserves P-independence 
•  Example (today’s lecture) 

• Local view 
- Does not preserve P-independent program behavior 
-  Example from previous lecture? 

12/01/09 

What is a PGAS Language? 
• PGAS = Partitioned Global Address Space 

-  Present a global address space to the application developer 
- May still run on a distributed memory architecture 
-  Examples: Co-Array Fortran, Unified Parallel C 

• Modern parallel programming languages present a 
global address space abstraction 

-  Performance?  Portability?  

• A closer look at a NEW global view language, Chapel 
-  From DARPA High Productivity Computing Systems program 
-  Language design initiated around 2003 
- Also X10 (IBM) and Fortress (Sun) 

12/01/09 

Chapel Domain Example: Sparse Matrices 
Recall sparse matrix-vector multiply computation from 

P1&P2 

for (j=0; j<nr; j++) {                                                       
    for (k = rowstr[j]; k<rowstr[j+1]-1; k++)  
      t[j] = t[j] + a[k] * x[colind[k]]; 
  } 

12/01/09 



12/1/09 

3 

Chapel Formulation 
Declare a dense domain for sparse matrix 
const dnsDom = [1..n, 1..n]; 
Declare a sparse domain 
var spsDom: sparse subdomain(dnsDom); 
Var spsArr: [spsDom] real; 
Now you need to initialize the spsDom.  As an example, 
spsDom = [(1,2),(2,3),(2,7),(3,6),(4,8),(5,9),(6,4),(9,8)]; 
Iterate over sparse domain: 
forall (i,j) in spsDom 
 result[i] = result[i] + spsArr(i,j) * input[j]; 

12/01/09 

I. MapReduce 
• What is MapReduce? 

• Example computing environment 

• How it works 

• Fault Tolerance 

• Debugging 

• Performance 

What is MapReduce? 

•  Parallel programming model meant for large clusters 
- User implements Map() and Reduce()‏ 

•  Parallel computing framework 
-  Libraries take care of EVERYTHING else 

-  Parallelization 
-  Fault Tolerance 
-  Data Distribution 
-  Load Balancing 

•  Useful model for many practical tasks (large data) 

Map and Reduce 

• Borrowed from functional programming languages (eg. Lisp)‏ 

•  Map()‏ 
-  Process a key/value pair to generate intermediate key/value pairs 

•  Reduce()  ‏
- Merge all intermediate values associated with the same key 



12/1/09 

4 

Example: Counting Words 

•  Map()‏ 
-  Input <filename, file text> 
-  Parses file and emits <word, count> pairs 

-  eg. <”hello”, 1> 

•  Reduce()  ‏
- Sums values for the same key and emits <word, TotalCount> 

-  eg. <”hello”, (3 5 2 7)>  => <”hello”, 17> 

Example Use of MapReduce 

•  Counting words in a large set of documents 

map(string key, string value)  ‏
//key: document name 
//value: document contents 
for each word w in value 

EmitIntermediate(w, “1”); 

reduce(string key, iterator values)  ‏
//key: word 

//values: list of counts 
int results = 0; 
for each v in values 

result += ParseInt(v); 
Emit(AsString(result)); 

Google Computing Environment 

•  Typical Clusters contain 1000's of machines 
•  Dual-processor x86's running Linux with 2-4GB 

memory 
•  Commodity networking 

- Typically 100 Mbs or 1 Gbs 

•  IDE drives connected to        
 individual machines 

- Distributed file system 

How MapReduce Works 

•  User to do list: 
-  indicate: 

-  Input/output files 
-  M: number of map tasks 
-  R: number of reduce tasks 
-  W: number of machines 

- Write map and reduce functions 
- Submit the job 

•  This requires no knowledge of parallel/distributed 
systems!!! 

•  What about everything else? 



12/1/09 

5 

Data Distribution 

•  Input files are split into M pieces on distributed file 
system 

- Typically ~ 64 MB blocks 

•  Intermediate files created from map tasks are 
written to local disk 

•  Output files are written to distributed file system 

Assigning Tasks 

•  Many copies of user program are started 
•  Tries to utilize data localization by running map tasks 

on machines with data 
•  One instance becomes          

 the Master 
•  Master finds idle machines and assigns them tasks  

Execution (map)‏ 

•  Map workers read in contents of corresponding input 
partition 

•  Perform user-defined map computation to create 
intermediate <key,value> pairs 

•  Periodically buffered output pairs written to local 
disk 

-  Partitioned into R regions by a partitioning function 

Partition Function 

•  Example partition function: hash(key) mod R 

•  Why do we need this? 

•  Example Scenario: 
- Want to do word counting on 10 documents 
-  5 map tasks, 2 reduce tasks 



12/1/09 

6 

Execution (reduce)  ‏

•  Reduce workers iterate over ordered intermediate 
data 

-  Each unique key encountered – values are passed to user's 
reduce function 

-  eg. <key, [value1, value2,..., valueN]> 

•  Output of user's reduce function is written to 
output file on global file system 

•  When all tasks have completed, master wakes up 
user program 

Observations 

•  No reduce can begin until map is complete 

•  Tasks scheduled based on location of data 

•  If map worker fails any time before reduce finishes, 
task must be completely rerun 

•  Master must communicate locations of intermediate 
files 

•  MapReduce library does most of the hard work for 
us! 



12/1/09 

7 

Fault Tolerance 

•  Workers are periodically pinged by master 
- No response = failed worker 

•  Master writes periodic checkpoints 

•  On errors, workers send “last gasp” UDP packet to 
master  

- Detect records that cause deterministic crashes and skips 
them 

Fault Tolerance 

•  Input file blocks stored on multiple machines 

•  When computation almost done, reschedule in-
progress tasks 

- Avoids “stragglers” 

Debugging 

•  Offers human readable status info on http server 
- Users can see jobs completed, in-progress, processing rates, 

etc. 

•  Sequential implementation 
-  Executed sequentially on a single machine 
- Allows use of gdb and other debugging tools 

Performance 

•  Tests run on 1800 machines 
-  4GB memory 
- Dual-processor # 2 GHz Xeons with Hyperthreading 
- Dual 160 GB IDE disks 
- Gigabit Ethernet per machine 

•  Run over weekend – when machines were mostly idle 
•  Benchmark: Sort 

- Sort 10^10 100-byte records 



12/1/09 

8 

Performance  

Normal No Backup Tasks 200 Processes Killed 

MapReduce Conclusions 

•  Simplifies large-scale computations that fit this model 
•  Allows user to focus on the problem without worrying 

about details 
•  Computer architecture not very important 

-  Portable model 

References 

•  Jeffery Dean and Sanjay Ghemawat, MapReduce: Simplified 
Data Processing on Large Clusters 

•  Josh Carter, http://multipart-mixed.com/software/
mapreduce_presentation.pdf 

•  Ralf Lammel, Google's MapReduce Programming Model – 
Revisited 

•  http://code.google.com/edu/parallel/mapreduce-tutorial.html 

•  RELATED 
- Sawzall 
-  Pig 
- Hadoop 


