
8/27/09

1

08/25/2009 CS4961

CS4961 Parallel Programming 

Lecture 2:  
Introduction to Parallel

Algorithms  

Mary Hall 
August 27, 2009  

1

Administrative
• Homework 1 posted, due September 3 before class
• Use the “handin” program on the CADE machines
• Use the following command:
 “handin cs4961 hw1 <prob1file>”
• Waiving CS4400 prerequisite, replacing with CS3810

08/25/2009 CS4961 2

Homework 1 – Due 9:10 AM, Thursday, Sept. 3
• To submit your homework:

- Submit a PDF file
- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw1 <prob1file>”

• Problem 1:
- What are your goals after this year and how do you

anticipate this class is going to help you with that? Some
possible answers, but please feel free to add to them. Also,
please write at least one sentence of explanation.

- A job in the computing industry
- A job in some other industry where computing is applied to

real-world problems
- As preparation for graduate studies
-  Intellectual curiosity about what is happening in the computing

field
- Other

08/25/2009 CS4961 3

Homework 1
• Problem 2:

-  Provide pseudocode (as in the book and class notes) for a
correct and efficient parallel implementation in C of the
parallel sums code, based on the tree-based concept in
slides 26 and 27 of Lecture 2. Assume that you have an
array of 128 elements and you are using 8 processors.

- Hints:
- Use an iterative algorithm similar to count3s, but use the tree

structure to accumulate the final result.
- Use the book to show you how to add threads to what we

derived for count3s.

• Problem 3:
- Now show how the same algorithm can be modified to find

the maximum element of an array. (problem 2 in text). Is
this also a reduction computation? If so, why?

08/25/2009 CS4961 4

8/27/09

2

Today’s Lecture

• Parallelism in Everyday Life
• Learning to Think in Parallel
• Aspects of parallel algorithms (and a hint at
complexity!)

• Derive parallel algorithms
• Discussion
• Sources for this lecture:

- Larry Snyder, “http://www.cs.washington.edu/
education/courses/524/08wi/”

08/25/2009 5CS4961

Is it really harder to “think” in parallel?
• Some would argue it is more natural to think
in parallel…

• … and many examples exist in daily life
• Examples?

08/25/2009 CS4961 6

Is it really harder to “think” in parallel?
• Some would argue it is more natural to think
in parallel…

• … and many examples exist in daily life
- House construction -- parallel tasks, wiring and

plumbing performed at once (independence), but
framing must precede wiring (dependence)

- Similarly, developing large software systems
- Assembly line manufacture - pipelining, many

instances in process at once
- Call center - independent calls executed

simultaneously (data parallel)
- “Multi-tasking” – all sorts of variations

08/25/2009 CS4961 7

Reasoning about a Parallel Algorithm
• Ignore architectural details for now
• Assume we are starting with a sequential
algorithm and trying to modify it to execute in
parallel

- Not always the best strategy, as sometimes the
best parallel algorithms are NOTHING like their
sequential counterparts

- But useful since you are accustomed to sequential
algorithms

08/25/2009 CS4961 8

8/27/09

3

Reasoning about a parallel algorithm, cont.

• Computation Decomposition
- How to divide the sequential computation among

parallel threads/processors/computations?

• Aside: Also, Data Partitioning (ignore today)
• Preserving Dependences

- Keeping the data values consistent with respect
to the sequential execution.

• Overhead
- We’ll talk about some different kinds of

overhead

08/25/2009 CS4961 9

Key Control Concept: Data Dependence
• Question: When is parallelization guaranteed to be

safe?
• Answer: If there are no data dependences across

reordered computations.
• Definition: Two memory accesses are involved in a

data dependence if they may refer to the same
memory location and one of the accesses is a write.

• Bernstein’s conditions (1966): Ij is the set of
memory locations read by process Pj, and Oj the set
updated by process Pj. To execute Pj and another
process Pk in parallel,

 Ij ∩ Ok = ϕ write after read
 Ik ∩ Oj = ϕ read after write
 Oj ∩ Ok = ϕ write after write

08/25/2009 CS4961 10

Data Dependence and Related Definitions

•  Actually, parallelizing compilers must formalize this to guarantee
correct code.

•  Let’s look at how they do it. It will help us understand how to reason
about correctness as programmers.

•  Definition:
Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same program
statement.

•  Source:
•  “Optimizing Compilers for Modern Architectures: A Dependence-Based

Approach”, Allen and Kennedy, 2002, Ch. 2. (not required or essential)

08/25/2009 11CS4961

Some Definitions (from Allen & Kennedy)

• Definition 2.5:
- Two computations are equivalent if, on the same inputs,

- they produce identical outputs
- the outputs are executed in the same order

• Definition 2.6:
- A reordering transformation

- changes the order of statement execution
- without adding or deleting any statement executions.

• Definition 2.7:
- A reordering transformation preserves a dependence if

-  it preserves the relative execution order of the dependences’
source and sink.

08/25/200912 CS4961

8/27/09

4

Fundamental Theorem of Dependence

• Theorem 2.2:
- Any reordering transformation that preserves

every dependence in a program preserves the
meaning of that program.

08/25/200913 CS4961

Simple Example 1:
“Hello World” of Parallel Programming

• Count the 3s in array[] of length values
• Definitional solution … Sequential program

 count = 0;
 for (i=0; i<length; i++) {
 if (array[i] == 3)
 count += 1;
 }

Can we rewrite this to a parallel code?

08/25/2009 CS4961 14

Computation Partitioning
• Block decomposition: Partition original loop
into separate “blocks” of loop iterations.

- Each “block” is assigned to an independent
“thread” in t0, t1, t2, t3 for t=4 threads

- Length = 16 in this example

08/25/2009 CS4961 15

2 3 2 0
7

3 3 0
2

1 2 3 0 1 0
9

1 2 3 { { { {

t0 t1 t2 t3

int block_length_per_thread = length/t;
int start = id * block_length_per_thread;
for (i=start; i<start+block_length_per_thread; i++) {
 if (array[i] == 3)
 count += 1;
}

Correct?
Preserve
Dependences?

Data Race on Count Variable

• Two threads may interfere on memory writes

08/25/2009 CS4961 16

load count

increment count
store count

Thread 3 Thread 1

load count
increment count

store count

2 3 2 0
7

3 3 0
2

1 2 3 0 1 0
9

1 2 3 { { { {
t0 t1 t2 t3

count = 0

count = 1
count = 2

count = 1
store<count,1>

store<count,2>

8/27/09

5

What Happened?
• Dependence on count across iterations/
threads

- But reordering ok since operations on count are
associative

• Load/increment/store must be done
atomically to preserve sequential meaning

• Definitions:
- Atomicity: a set of operations is atomic if either

they all execute or none executes. Thus, there
is no way to see the results of a partial
execution.

- Mutual exclusion: at most one thread can
execute the code at any time

08/25/2009 CS4961 17

Try 2: Adding Locks
• Insert mutual exclusion (mutex) so that only
one thread at a time is loading/incrementing/
storing count atomically

08/25/2009 CS4961 18

int block_length_per_thread = length/t;
mutex m;
int start = id * block_length_per_thread;
for (i=start; i<start+block_length_per_thread; i++) {
 if (array[i] == 3) {
 mutex_lock(m);
 count += 1;
 mutex_unlock(m);
 }
}

Correct now. Done?

Performance Problems
• Serialization at the mutex
• Insufficient parallelism granularity
• Impact of memory system

08/25/2009 CS4961 19

Lock Contention and Poor Granularity
• To acquire lock, must go
through at least a few levels of
cache (locality)

•  Local copy in register not going to be
correct

• Not a lot of parallel work
outside of acquiring/releasing
lock

08/25/2009 CS4961 20

8/27/09

6

Try 3: Increase “Granularity”
• Each thread operates on a private copy of count
• Lock only to update global data from private
copy

08/25/2009 CS4961 21

mutex m;
int block_length_per_thread = length/t;
int start = id * block_length_per_thread;
for (i=start; i<start+block_length_per_thread; i++) {
 if (array[i] == 3)
 private_count[id] += 1;
}
mutex_lock(m);
count += private_count[id];
mutex_unlock(m);

Much Better, But Not Better than Sequential
• Subtle cache effects are limiting performance

08/25/2009 CS4961 22

Private variable ≠
Private cache line

Try 4: Force Private Variables into
Different Cache Lines

• Simple way to do this?
• See textbook for authors’ solution

08/25/2009 CS4961 23

Parallel speedup when <t = 2>:
 time(1)/time(2) = 0.91/0.51
 = 1.78 (close to number of processors!)

Discussion: Overheads
• What were the overheads we saw with this
example?

- Extra code to determine portion of computation
- Locking overhead: inherent cost plus contention
- Cache effects: false sharing

08/25/2009 CS4961 24

8/27/09

7

• Interestingly, this code represents a common pattern
in parallel algorithms

• A reduction computation
-  From a large amount of input data, compute a smaller result

that represents a reduction in the dimensionality of the input
-  In this case, a reduction from an array input to a scalar result

(the count)

• Reduction computations exhibit dependences that must
be preserved

-  Looks like “result = result op …”
- Operation op must be associative so that it is safe to reorder

them

• Aside: Floating point arithmetic is not truly associative,
but usually ok to reorder

08/25/2009 CS4961 25

Generalizing from this example
Simple Example 2:
Another “Hello World” Equivalent

• Parallel Summation:
- Adding a sequence of numbers A[0],…,A[n-1]

• Standard way to express it
 sum = 0;
 for (i=0; i<n; i++) {
 sum += A[i];
 }
• Semantics require:
 (…((sum+A[0])+A[1])+…)+A[n-1]
• That is, sequential
• Can it be executed in parallel?

08/25/2009 CS4961 26

Computation Decomposition: Pairwise Additions
• add pairs of values producing 1st level
results,

• add pairs of 1st level results producing 2nd
level results,

• sum pairs of 2nd level results …
• That is, (…((A[0]+A[1]) + (A[2]+A[3])) + ... +
(A[n-2]+A[n-1]))…)

08/25/2009 CS4961 27

Graphical Depiction of Sum Code

08/25/2009 CS4961 28

Original Order Pairwise Order

Which decomposition is better suited for parallel execution.

8/27/09

8

08/25/2009 CS4961

Summary of Lecture
• How to Derive Parallel Versions of Sequential Algorithms

- Computation Partitioning
- Preserving Dependences and Reordering

Transformations
- Reduction Computations
- Overheads

29

Next Time
• A Discussion of parallel computing platforms
• Questions about first written homework assignment

08/25/2009 CS4961 30

