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L19: Advanced 
CUDA Issues


November 10, 2009


Administrative 
• CLASS CANCELLED, TUESDAY, NOVEMBER 17 
• Guest Lecture, November 19, Ganesh Gopalakrishnan 
• Thursday, November 12 

- Turn in 1 page project description (next few slides) 
-  handin cs4961 pdesc <file, ascii or PDF ok> 

• VTUNE problem identified, solution coming soon 
- Has to do with where “Application Data” is redirected in 

accounts 

• Mailing list: cs4961@list.eng.utah.edu 
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A Few Words About Final Project 
• Purpose:  

- A chance to dig in deeper into a parallel programming model 
and explore concepts.   

-  Present results to work on communication of technical ideas 

• Write a non-trivial parallel program that combines 
two parallel programming languages/models.  In some 
cases, just do two separate implementations. 

- OpenMP + SSE-3 
- OpenMP + CUDA (but need to do this in separate parts of 

the code) 
- TBB + SSE-3 
- MPI + OpenMP 
- MPI + SSE-3 
- MPI + CUDA 

• Present results in a poster session on the last day of 
class CS4961 3


Example Projects 
• Look in the textbook or on-line 

-  Recall Red/Blue from Ch. 4 
-  Implement in MPI (+ SSE-3) 
-  Implement main computation in CUDA  

- Algorithms from Ch. 5 
- SOR from Ch. 7 

-  CUDA implementation? 
-  FFT from Ch. 10 
- Jacobi from Ch. 10 
- Graph algorithms 
-  Image and signal processing algorithms 
- Other domains… 
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Next Thursday, November 12   
•  Use handin program on CADE machines 

•  handin cs4961 pdesc <file, ascii or PDF ok> 

• Projects can be individual or group efforts, with 1 to 
three students per project. 

• Turn in <1 page project proposal 
- Algorithm to be implemented 
-  Programming model(s) 
-  Implementation plan 
- Validation and measurement plan 
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Outline 

• Reminder of CUDA Architecture 

• Execution Model 
-  Brief mention of control flow 

• Heterogeneous Memory Hierarchy 
-  Locality through data placement 
- Maximizing bandwidth through global memory coalescing 
- Avoiding memory bank conflicts 

• Tiling and its Applicability to CUDA Code Generation 
This lecture includes slides provided by: 
   Wen-mei Hwu (UIUC) and David Kirk (NVIDIA) 
   see http://courses.ece.uiuc.edu/ece498/al1/ 

   and Austin Robison (NVIDIA) 
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Reading 
• David Kirk and Wen-mei Hwu manuscript (in progress) 

-  http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html 

• CUDA 2.x Manual, particularly Chapters 2 and 4 
(download from nvidia.com/cudazone) 

• Nice series from Dr. Dobbs Journal by Rob Farber 
-  http://www.ddj.com/cpp/207200659 
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CUDA Programming Model: 
A Highly Multithreaded Coprocessor 
•  The GPU is viewed as a compute device that: 

-  Is a coprocessor to the CPU or host 
-  Has its own DRAM (device memory) 
-  Runs many threads in parallel 

•  Data-parallel portions of an application are executed 
on the device as kernels which run in parallel on many 
threads 

•  Differences between GPU and CPU threads  
-  GPU threads are extremely lightweight 

-  Very little creation overhead 
-  GPU needs 1000s of threads for full efficiency 

-  Multi-core CPU needs only a few 

11/05/09
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Thread Batching: Grids and Blocks 
•  A kernel is executed as a grid 

of thread blocks 
-  All threads share data 

memory space 

•  A thread block is a batch of 
threads that can cooperate 
with each other by: 
-  Synchronizing their execution 

-  For hazard-free shared 
memory accesses 

-  Efficiently sharing data through 
a low latency shared memory 

•  Two threads from two 
different blocks cannot 
cooperate 

Host 

Kernel 
1 

Kernel 
2 

Device 

Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 

Courtesy: NDVIA 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 
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Block and Thread IDs 

•  Threads and blocks have 
IDs 
-  So each thread can decide 

what data to work on 
-  Block ID: 1D or 2D 

(blockIdx.x, blockIdx.y) 
-  Thread ID: 1D, 2D, or 3D 

(threadIdx.{x,y,z})  

•  Simplifies memory 
addressing when processing 
multidimensional data 
-  Image processing 
-  Solving PDEs on volumes 
-  … 
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Block 
(0, 0) 

Block 
(1, 0) 
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(2, 0) 
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(0, 1) 
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(1, 1) 
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(2, 1) 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 

Courtesy: NDVIA 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 

Hardware Implementation: A Set of SIMD 
Multiprocessors 
•  A device has a set of  

multiprocessors 
•  Each multiprocessor is a 

set of 32-bit processors 
with a Single Instruction 
Multiple Data architecture 
-  Shared instruction unit 

•  At each clock cycle, a 
multiprocessor executes 
the same instruction on a 
group of threads called a 
warp 

•  The number of threads in a 
warp is the warp size 

Device 

Multiprocessor N 

Multiprocessor 2 
Multiprocessor 1 

Instruction 
Unit 

Processor 1 
… 

Processor 2 Processor M 

Hardware Execution Model 

I. SIMD Execution of  warpsize=M 
threads (from single block) 

–  Result is a set of instruction streams 
roughly equal to # blocks in thread 
divided by warpsize 

II. Multithreaded Execution across 
different instruction streams within 
block 

–  Also possibly across different blocks if 
there are more blocks than SMs 

III. Each block mapped to single SM 
–  No direct interaction across SMs  

Device 

Mul*processor N 

Mul*processor 2 
Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 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Example SIMD Execution 

“Count 3” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 3); 
} 

P0 
Instruction 

Unit P! PM-1 

Reg 

... 

Memory 

Reg Reg threadIdx 

Example SIMD Execution 

“Count 3” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 3); 
} 

P0 
Instruction 

Unit P! PM-1 
... 

Memory 

Reg Reg Reg 

LDC 0, &(dout+ 
                 threadIdx) 

threadIdx threadIdx 

+  +  + 

&dout  &dout  &dout 

Each “core” 
initializes 
data from 
addr based 
on its own 
threadIdx 

Example SIMD Execution 

“Count 3” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 3); 
} 

P0 
Instruction 

Unit P! PM-1 
... 

Memory 

Reg Reg Reg 

/* int i=0; */ 
LDC 0, R3 

Each “core” 
initializes its 

own R3 

0  0  0 

Example SIMD Execution 

“Count 3” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 3); 
} 

P0 
Instruction 

Unit P! PM-1 

Reg 

... 

Memory 

Reg Reg /* i*BLOCKSIZE   
    + threadIdx    */ 
LDC BLOCKSIZE,R2 
MUL R1, R3, R2 
ADD R4, R1, RO 

Each “core” 
performs  

same 
operations 

from its own 
registers 

Etc. 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SM Warp Scheduling 

•  SM hardware implements zero-
overhead Warp scheduling 
–  Warps whose next instruction has 

its operands ready for consumption 
are eligible for execution 

–  Eligible Warps are selected for 
execution on a prioritized 
scheduling policy 

–  All threads in a Warp execute the 
same instruction when selected 

•  4 clock cycles needed to dispatch 
the same instruction for all 
threads in a Warp in G80 
–  If one global memory access is 

needed for every 4 instructions 
–  A minimal of 13 Warps are needed 

to fully tolerate 200-cycle memory 
latency 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 

SIMD Execution of Control Flow 

Control flow example 
if (threadIdx >= 2) { 
    out[threadIdx] += 100; 
} 
else { 
    out[threadIdx] += 10; 
} 

P0 

Instructio
n 

Unit 
P! PM-1 

Re
g ... 

Memory 

Re
g 

Re
g compare  

threadIdx,2  

SIMD Execution of Control Flow 
Control flow example 
if (threadIdx.x >= 2) { 
    out[threadIdx.x] += 100; 
} 
else { 
    out[threadIdx.x] += 10; 
} 

P0 

Instructio
n 

Unit 
P! PM-1 

Re
g ... 

Memory 

Re
g 

Re
g 

/* possibly predicated 
using CC */ 
(CC) LD R5,  
          &(out+threadIdx.x) 
(CC) ADD R5, R5, 100 
(CC) ST R5,  
         &(out+threadIdx.x) 

X X ✔ ✔ 

SIMD Execution of Control Flow 

Control flow example 
if (threadIdx >= 2) { 
    out[threadIdx] += 100; 
} 
else { 
    out[threadIdx] += 10; 
} 

P0 

Instructio
n 

Unit 
P! PM-1 

Re
g ... 

Memory 

Re
g 

Re
g 

/* possibly predicated 
using CC */ 
(not CC) LD R5,  
             &(out+threadIdx) 
(not CC) ADD R5, R5, 10 
(not CC) ST R5,  
             &(out+threadIdx) 

✔ ✔ X X 
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A Very Simple Execution Model 
• No branch prediction 

- Just evaluate branch targets and wait for resolution 
-  But wait is only a small number of cycles 

• No speculation 
- Only execute useful instructions 

Terminology 
• Divergent paths 

- Different threads within a warp take different control flow 
paths within a kernel function 

- N divergent paths in a warp? 
- An N-way divergent warp is serially issued over the N 

different paths using a hardware stack and per-thread 
predication logic to only write back results from the threads 
taking each divergent path. 

-  Performance decreases by about a factor of N 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 

Hardware Implementation: Memory 
Architecture 

•  The local, global, constant, and 
texture spaces are regions of 
device memory 

•  Each multiprocessor has: 
-  A set of 32-bit registers per 

processor 
-  On-chip shared memory 

-  Where the shared memory 
space resides 

-  A read-only constant cache 
-  To speed up access to the 

constant memory space 
-  A read-only texture cache 

-  To speed up access to the 
texture memory space 

Device 

Multiprocessor N 

Multiprocessor 2 
Multiprocessor 1 

Device memory 

Shared Memory 

Instruction 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Global, constant, texture memories 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 

Programmer’s View: Memory Spaces 
•  Each thread can: 

-  Read/write per-thread registers 
-  Read/write per-thread local memory 
-  Read/write per-block shared memory 
-  Read/write per-grid global memory 
-  Read only per-grid constant memory 
-  Read only per-grid texture memory 

Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host 

•  The host can read/write 
global, constant, and 
texture memory 
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Constant Memory Example 

• Signal recognition:  
- Apply input signal (a vector) to a set of precomputed 

transform matrices 
-  Compute M1V, M2V, …, MnV 

__constant__ float d_signalVector[M]; 
__device__ float R[N][M]; 

__host__ void outerApplySignal () { 
    float *h_inputSignal; 
    dim3 dimGrid(N); 
    dim3 dimBlock(M); 
    cudaMemcpyToSymbol (d_signalVector, 
          h_inputSignal, M*sizeof(float)); 
   ApplySignal<<<dimGrid,dimBlock>>>(M); 
} 

__global__ void ApplySignal (int M) { 
    float result = 0.0; /* register */ 

    for (j=0; j<M; j++) 
        result += d_M[blockIdx.x][threadIdx.x][j] * 
               d_signalVector[j]; 
    R[blockIdx.x][threadIdx.x] = result; 
} 

Additional Detail 
• Suppose each thread accesses different data from constant memory on same instruction 

-  Reuse across threads? 
-  Consider capacity of constant cache and locality 
-  Code transformation needed?  (later in lecture) 
-  Cache latency proportional to number of accesses in a warp 

-  No reuse?   
-  Should not be in constant memory. 

CS6963 26

L6: Memory Hierarchy I 

Now Let’s Look at Shared Memory 

• Common Programming Pattern (5.1.2 of 
CUDA manual) 

- Load data into shared memory 
- Synchronize (if necessary) 
- Operate on data in shared memory 
- Synchronize (if necessary) 
- Write intermediate results to global 

memory 
- Repeat until done 

Shared 
memory 

Global memory 

Familiar concept? 

Mechanics of Using Shared Memory 

• __shared__ type qualifier required 
• Must be allocated from global/device function, 
or as “extern” 

• Examples: 

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocation */ 
/* MEMSIZE is size of per-block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs,MEMSIZE>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   /* create or copy from global memory */ 
   d_s_array[j] = …; 

  /* write result back to global memory */ 
   d_g_array[j] =  d_s_array[j]; 
}  
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Using Loop Transformations in GPU Code Generation 

Cod transformations Application 

Conventional Architectures GPU 

Tiling • Manage reuse in limited storage • Manage reuse in limited 
storage 
• Partition parallel execution at 
2 levels 

Data-copy • Eliminate conflict misses in cache • Copy data to specialized 
memory structures 

Permutation • Reorder loop structure to enable other 
optimizations 

• Reorder loop structure to 
enable other optimizations 

Unrolling • Exposes fine-grain parallelism by 
replicating the loop body 

• Exposes fine-grain parallelism 
by replicating the loop body 

… 

Tiling for Computation Mapping in GPUs 

J 

I 
Tiles Mapped to 

blocks 

Code Optimization and Generation: Jacobi Relaxation 

Loops 
representing 

Blocks 

Loops 
representing 

Threads 

Indexing expressions in 
sequential and parallel code 

Code Optimization and Generation  

Apply tiling & 
generate 

scaffolding 
CUDA code 

CUDA 
kernel call  

Generate 
CUDA 

kernel code 
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Bandwidth to Shared Memory: 
Parallel Memory Accesses 

• Consider each thread accessing a different location 
in shared memory 

• Bandwidth maximized if each one is able to proceed 
in parallel 

• Hardware to support this 
-  Banked memory: each bank can support an access on every 

memory cycle 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

Bank Addressing Examples 

•  No Bank Conflicts 
-  Linear addressing  

stride == 1 

•  No Bank Conflicts 
-  Random 1:1 Permutation 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 
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Bank Addressing Examples 

•  2-way Bank Conflicts 
-  Linear addressing  

stride == 2 

•  8-way Bank Conflicts 
-  Linear addressing  

stride == 8 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

How addresses map to banks on G80 

•  Each bank has a bandwidth of 32 bits per clock cycle 
•  Successive 32-bit words are assigned to successive 

banks 
•  G80 has 16 banks 

-  So bank = address % 16 
-  Same as the size of a half-warp 

-  No bank conflicts between different half-warps, only within a 
single half-warp 
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
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Shared memory bank conflicts 

•  Shared memory is as fast as registers if there are no 
bank conflicts 

•  The fast case: 
-  If all threads of a half-warp access different banks, there 

is no bank conflict 
-  If all threads of a half-warp access the identical address, 

there is no bank conflict (broadcast) 

•  The slow case: 
-  Bank Conflict: multiple threads in the same half-warp access 

the same bank 
-  Must serialize the accesses 
-  Cost = max # of simultaneous accesses to a single bank 

Global Memory Accesses 

• Each thread issues memory accesses to data types of 
varying sizes, perhaps as small as 1 byte entities 

• Given an address to load or store, memory returns/
updates “segments” of either 32 bytes, 64 bytes or 128 
bytes 

• Maximizing bandwidth: 
- Operate on an entire 128 byte segment for each memory transfer 

Understanding Global Memory Accesses 

Memory protocol for compute capability 1.2* (CUDA 
Manual 5.1.2.1) 

• Start with memory request by smallest numbered 
thread.  Find the memory segment that contains the 
address (32, 64 or 128 byte segment, depending on 
data type) 

• Find other active threads requesting addresses within 
that segment and coalesce 

• Reduce transaction size if possible 
• Access memory and mark threads as “inactive” 
• Repeat until all threads in half-warp are serviced 

*Includes Tesla and GTX platforms 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 
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M3,0 
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Memory Layout of a Matrix in C 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

T1 T2 T3 T4 

Time Period 1 

T1 T2 T3 T4 

Time Period 2 

Access 
direction in 
Kernel 
code 

… 



11/11/09 

11 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

Memory Layout of a Matrix in C 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

T1 T2 T3 T4 

Time Period 1 

T1 T2 T3 T4 

Time Period 2 

Access 
direction in 
Kernel 
code 

… 

Summary of Lecture 
• A deeper probe of performance issues 

-  Execution model 
-  Control flow 
- Heterogeneous memory hierarchy 

-  Locality and bandwidth 
- Tiling for CUDA code generation 


