
11/11/09

1

L19: Advanced
CUDA Issues

November 10, 2009

Administrative
• CLASS CANCELLED, TUESDAY, NOVEMBER 17
• Guest Lecture, November 19, Ganesh Gopalakrishnan
• Thursday, November 12

- Turn in 1 page project description (next few slides)
-  handin cs4961 pdesc <file, ascii or PDF ok>

• VTUNE problem identified, solution coming soon
- Has to do with where “Application Data” is redirected in

accounts

• Mailing list: cs4961@list.eng.utah.edu

CS4961 2

A Few Words About Final Project
• Purpose:

- A chance to dig in deeper into a parallel programming model
and explore concepts.

-  Present results to work on communication of technical ideas

• Write a non-trivial parallel program that combines
two parallel programming languages/models. In some
cases, just do two separate implementations.

- OpenMP + SSE-3
- OpenMP + CUDA (but need to do this in separate parts of

the code)
- TBB + SSE-3
- MPI + OpenMP
- MPI + SSE-3
- MPI + CUDA

• Present results in a poster session on the last day of
class CS4961 3

Example Projects
• Look in the textbook or on-line

-  Recall Red/Blue from Ch. 4
-  Implement in MPI (+ SSE-3)
-  Implement main computation in CUDA

- Algorithms from Ch. 5
- SOR from Ch. 7

-  CUDA implementation?
-  FFT from Ch. 10
- Jacobi from Ch. 10
- Graph algorithms
-  Image and signal processing algorithms
- Other domains…

CS4961 4

11/11/09

2

Next Thursday, November 12
•  Use handin program on CADE machines

•  handin cs4961 pdesc <file, ascii or PDF ok>

• Projects can be individual or group efforts, with 1 to
three students per project.

• Turn in <1 page project proposal
- Algorithm to be implemented
-  Programming model(s)
-  Implementation plan
- Validation and measurement plan

CS4961 5

Outline

• Reminder of CUDA Architecture

• Execution Model
-  Brief mention of control flow

• Heterogeneous Memory Hierarchy
-  Locality through data placement
- Maximizing bandwidth through global memory coalescing
- Avoiding memory bank conflicts

• Tiling and its Applicability to CUDA Code Generation
This lecture includes slides provided by:
 Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
 see http://courses.ece.uiuc.edu/ece498/al1/

 and Austin Robison (NVIDIA)
11/05/09

Reading
• David Kirk and Wen-mei Hwu manuscript (in progress)

-  http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html

• CUDA 2.x Manual, particularly Chapters 2 and 4
(download from nvidia.com/cudazone)

• Nice series from Dr. Dobbs Journal by Rob Farber
-  http://www.ddj.com/cpp/207200659

11/05/09

CUDA Programming Model:
A Highly Multithreaded Coprocessor
•  The GPU is viewed as a compute device that:

-  Is a coprocessor to the CPU or host
-  Has its own DRAM (device memory)
-  Runs many threads in parallel

•  Data-parallel portions of an application are executed
on the device as kernels which run in parallel on many
threads

•  Differences between GPU and CPU threads
-  GPU threads are extremely lightweight

-  Very little creation overhead
-  GPU needs 1000s of threads for full efficiency

-  Multi-core CPU needs only a few

11/05/09

11/11/09

3

Thread Batching: Grids and Blocks
•  A kernel is executed as a grid

of thread blocks
-  All threads share data

memory space

•  A thread block is a batch of
threads that can cooperate
with each other by:
-  Synchronizing their execution

-  For hazard-free shared
memory accesses

-  Efficiently sharing data through
a low latency shared memory

•  Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11/05/09

Block and Thread IDs

•  Threads and blocks have
IDs
-  So each thread can decide

what data to work on
-  Block ID: 1D or 2D

(blockIdx.x, blockIdx.y)
-  Thread ID: 1D, 2D, or 3D

(threadIdx.{x,y,z})

•  Simplifies memory
addressing when processing
multidimensional data
-  Image processing
-  Solving PDEs on volumes
-  …

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11/05/09

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation: A Set of SIMD
Multiprocessors
•  A device has a set of

multiprocessors
•  Each multiprocessor is a

set of 32-bit processors
with a Single Instruction
Multiple Data architecture
-  Shared instruction unit

•  At each clock cycle, a
multiprocessor executes
the same instruction on a
group of threads called a
warp

•  The number of threads in a
warp is the warp size

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Instruction
Unit

Processor 1
…

Processor 2 Processor M

Hardware Execution Model

I. SIMD Execution of warpsize=M
threads (from single block)

–  Result is a set of instruction streams
roughly equal to # blocks in thread
divided by warpsize

II. Multithreaded Execution across
different instruction streams within
block

–  Also possibly across different blocks if
there are more blocks than SMs

III. Each block mapped to single SM
–  No direct interaction across SMs

Device 

Mul*processor N 

Mul*processor 2 
Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

11/11/09

4

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1

Reg

... 

Memory 

Reg Reg threadIdx 

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1
... 

Memory 

Reg Reg Reg

LDC 0, &(dout+ 
                 threadIdx) 

threadIdx threadIdx 

+  +  + 

&dout  &dout  &dout 

Each “core”
initializes
data from
addr based
on its own
threadIdx

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1
... 

Memory 

Reg Reg Reg

/* int i=0; */ 
LDC 0, R3 

Each “core”
initializes its

own R3

0  0  0 

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1

Reg

... 

Memory 

Reg Reg /* i*BLOCKSIZE
 + threadIdx */
LDC BLOCKSIZE,R2
MUL R1, R3, R2
ADD R4, R1, RO 

Each “core”
performs

same
operations

from its own
registers

Etc. 

11/11/09

5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

SM Warp Scheduling

•  SM hardware implements zero-
overhead Warp scheduling
–  Warps whose next instruction has

its operands ready for consumption
are eligible for execution

–  Eligible Warps are selected for
execution on a prioritized
scheduling policy

–  All threads in a Warp execute the
same instruction when selected

•  4 clock cycles needed to dispatch
the same instruction for all
threads in a Warp in G80
–  If one global memory access is

needed for every 4 instructions
–  A minimal of 13 Warps are needed

to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0

Instructio
n

Unit
P! PM-1

Re
g ... 

Memory 

Re
g

Re
g compare

threadIdx,2

SIMD Execution of Control Flow
Control flow example
if (threadIdx.x >= 2) {
 out[threadIdx.x] += 100;
}
else {
 out[threadIdx.x] += 10;
}

P0

Instructio
n

Unit
P! PM-1

Re
g ... 

Memory 

Re
g

Re
g

/* possibly predicated
using CC */
(CC) LD R5,
 &(out+threadIdx.x)
(CC) ADD R5, R5, 100
(CC) ST R5,
 &(out+threadIdx.x)

X X ✔ ✔

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0

Instructio
n

Unit
P! PM-1

Re
g ... 

Memory 

Re
g

Re
g

/* possibly predicated
using CC */
(not CC) LD R5,
 &(out+threadIdx)
(not CC) ADD R5, R5, 10
(not CC) ST R5,
 &(out+threadIdx)

✔ ✔ X X

11/11/09

6

A Very Simple Execution Model
• No branch prediction

- Just evaluate branch targets and wait for resolution
-  But wait is only a small number of cycles

• No speculation
- Only execute useful instructions

Terminology
• Divergent paths

- Different threads within a warp take different control flow
paths within a kernel function

- N divergent paths in a warp?
- An N-way divergent warp is serially issued over the N

different paths using a hardware stack and per-thread
predication logic to only write back results from the threads
taking each divergent path.

-  Performance decreases by about a factor of N

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation: Memory
Architecture

•  The local, global, constant, and
texture spaces are regions of
device memory

•  Each multiprocessor has:
-  A set of 32-bit registers per

processor
-  On-chip shared memory

-  Where the shared memory
space resides

-  A read-only constant cache
-  To speed up access to the

constant memory space
-  A read-only texture cache

-  To speed up access to the
texture memory space

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Global, constant, texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Programmer’s View: Memory Spaces
•  Each thread can:

-  Read/write per-thread registers
-  Read/write per-thread local memory
-  Read/write per-block shared memory
-  Read/write per-grid global memory
-  Read only per-grid constant memory
-  Read only per-grid texture memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

•  The host can read/write
global, constant, and
texture memory

11/11/09

7

Constant Memory Example

• Signal recognition:
- Apply input signal (a vector) to a set of precomputed

transform matrices
-  Compute M1V, M2V, …, MnV

__constant__ float d_signalVector[M];
__device__ float R[N][M];

__host__ void outerApplySignal () {
 float *h_inputSignal;
 dim3 dimGrid(N);
 dim3 dimBlock(M);
 cudaMemcpyToSymbol (d_signalVector,
 h_inputSignal, M*sizeof(float));
 ApplySignal<<<dimGrid,dimBlock>>>(M);
}

__global__ void ApplySignal (int M) {
 float result = 0.0; /* register */

 for (j=0; j<M; j++)
 result += d_M[blockIdx.x][threadIdx.x][j] *
 d_signalVector[j];
 R[blockIdx.x][threadIdx.x] = result;
}

Additional Detail
• Suppose each thread accesses different data from constant memory on same instruction

-  Reuse across threads?
-  Consider capacity of constant cache and locality
-  Code transformation needed? (later in lecture)
-  Cache latency proportional to number of accesses in a warp

-  No reuse?
-  Should not be in constant memory.

CS6963 26

L6: Memory Hierarchy I

Now Let’s Look at Shared Memory

• Common Programming Pattern (5.1.2 of
CUDA manual)

- Load data into shared memory
- Synchronize (if necessary)
- Operate on data in shared memory
- Synchronize (if necessary)
- Write intermediate results to global

memory
- Repeat until done

Shared
memory

Global memory

Familiar concept?

Mechanics of Using Shared Memory

• __shared__ type qualifier required
• Must be allocated from global/device function,
or as “extern”

• Examples:

extern __shared__ float d_s_array[];

/* a form of dynamic allocation */
/* MEMSIZE is size of per-block */
/* shared memory*/
__host__ void outerCompute() {
 compute<<<gs,bs,MEMSIZE>>>();
}
__global__ void compute() {
 d_s_array[i] = …;
}

__global__ void compute2() {
 __shared__ float d_s_array[M];

 /* create or copy from global memory */
 d_s_array[j] = …;

 /* write result back to global memory */
 d_g_array[j] = d_s_array[j];
}

11/11/09

8

Using Loop Transformations in GPU Code Generation

Cod transformations Application

Conventional Architectures GPU

Tiling • Manage reuse in limited storage • Manage reuse in limited
storage
• Partition parallel execution at
2 levels

Data-copy • Eliminate conflict misses in cache • Copy data to specialized
memory structures

Permutation • Reorder loop structure to enable other
optimizations

• Reorder loop structure to
enable other optimizations

Unrolling • Exposes fine-grain parallelism by
replicating the loop body

• Exposes fine-grain parallelism
by replicating the loop body

…

Tiling for Computation Mapping in GPUs

J 

I 
Tiles Mapped to

blocks

Code Optimization and Generation: Jacobi Relaxation

Loops
representing

Blocks

Loops
representing

Threads

Indexing expressions in
sequential and parallel code

Code Optimization and Generation

Apply tiling &
generate

scaffolding
CUDA code

CUDA
kernel call

Generate
CUDA

kernel code

11/11/09

9

Bandwidth to Shared Memory:
Parallel Memory Accesses

• Consider each thread accessing a different location
in shared memory

• Bandwidth maximized if each one is able to proceed
in parallel

• Hardware to support this
-  Banked memory: each bank can support an access on every

memory cycle

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Bank Addressing Examples

•  No Bank Conflicts
-  Linear addressing

stride == 1

•  No Bank Conflicts
-  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

35

Bank Addressing Examples

•  2-way Bank Conflicts
-  Linear addressing

stride == 2

•  8-way Bank Conflicts
-  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

How addresses map to banks on G80

•  Each bank has a bandwidth of 32 bits per clock cycle
•  Successive 32-bit words are assigned to successive

banks
•  G80 has 16 banks

-  So bank = address % 16
-  Same as the size of a half-warp

-  No bank conflicts between different half-warps, only within a
single half-warp

11/11/09

10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
-  If all threads of a half-warp access different banks, there

is no bank conflict
-  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)

•  The slow case:
-  Bank Conflict: multiple threads in the same half-warp access

the same bank
-  Must serialize the accesses
-  Cost = max # of simultaneous accesses to a single bank

Global Memory Accesses

• Each thread issues memory accesses to data types of
varying sizes, perhaps as small as 1 byte entities

• Given an address to load or store, memory returns/
updates “segments” of either 32 bytes, 64 bytes or 128
bytes

• Maximizing bandwidth:
- Operate on an entire 128 byte segment for each memory transfer

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA
Manual 5.1.2.1)

• Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

• Find other active threads requesting addresses within
that segment and coalesce

• Reduce transaction size if possible
• Access memory and mark threads as “inactive”
• Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

11/11/09

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

Summary of Lecture
• A deeper probe of performance issues

-  Execution model
-  Control flow
- Heterogeneous memory hierarchy

-  Locality and bandwidth
- Tiling for CUDA code generation

