L19: Advanced
CUDA Issues

November 10, 2009

Administrative

+ CLASS CANCELLED, TUESDAY, NOVEMBER 17
* Guest Lecture, November 19, Ganesh Gopalakrishnan

* Thursday, November 12
- Turn in 1 page project description (hext few slides)
- handin cs4961 pdesc «file, ascii or PDF ok>
+ VTUNE problem identified, solution coming soon

- Has to do with where "Application Data” is redirected in
accounts

* Mailing list: cs4961@list.eng.utah.edu

Cs4961 2 UH‘IEVIVERSITY
OF UTAH

A Few Words About Final Project

* Purpose:

- A chance to dig in deeper into a parallel programming model
and explore concepts.

- Present results to work on communication of technical ideas
+ Write a non-trivial parallel program that combines

two parallel programming languages/models. In some
cases, just do two separate implementations.

- OpenMP + SSE-3

- OpenMP + CUDA (but need to do this in separate parts of
the code)

- TBB + SSE-3
- MPI + OpenMP
- MPI + SSE-3
- MPI + CUDA

* Present results in a poster session on the last day of

class ©S4961 ThE
UNIVERSITY
3

Example Projects

* Look in the textbook or on-line
- Recall Red/Blue from Ch. 4
- Implement in MPI (+ SSE-3)
- Implement main computation in CUDA
- Algorithms from Ch. 5
- SOR from Ch. 7
- CUDA implementation?
- FFT from Ch. 10
- Jacobi from Ch. 10
- Graph algorithms
- Image and signal processing algorithms
- Other domains...

B
4 u UNIVERSITY
OF UTAH

11/11/09

11/11/09

Next Thursday, November 12

+ Use handin program on CADE machines
+ handin cs4961 pdesc <file, ascii or PDF ok>

* Projects can be individual or group efforts, with 1 to
three students per project.
* Turn in <1 page project proposal
- Algorithm to be implemented
- Programming model(s)
- Implementation plan
- Validation and measurement plan

CS4961 5 UG‘IE\I[VERSITY
OF UTAH

Outline

+ Reminder of CUDA Architecture

+ Execution Model
- Brief mention of control flow

* Heterogeneous Memory Hierarchy
- Locality through data placement
- Maximizing bandwidth through global memory coalescing
- Avoiding memory bank conflicts

+ Tiling and its Applicability to CUDA Code Generation

This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.uiuc.edu/ece498/al1/

and Austin Robison (NVIDIA) THE
[UNIVERSITY
11/05/09 UOF UTAH

Reading

- David Kirk and Wen-mei Hwu manuscript (in progress)
- http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html

+ CUDA 2.x Manual, particularly Chapters 2 and 4
(download from nvidia.com/cudazone)

* Nice series from Dr. Dobbs Journal by Rob Farber
- http://www.ddj.com/cpp/207200659

wr
11/05/09 UUN[VERS[TY
OF UTAH

CUDA Programming Model:

A Highly Multithreaded Coprocessor
The GPU is viewed as a compute device that:
- Isacoprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel

+ Data-parallel portions of an aﬁplicaﬁon are executed
on the device as kernels which run in parallel on many
threads

Differences between GPU and CPU threads
- GPU threads are extremely lightweight
- Very little creation overhead
- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

wr
11/05/09 UUN[VERS[TY
OF UTAH

11/11/09

Thread Batching: 6rids and Blocks
+ A kernel is executed as a grid
of thread blocks Host Device
- All threads share data Grid 1

. 0) 1, 0) (2, 0)
+ A thread block is a batch of LILeS [@0

threads that can cooperate
with each other by:

- Synchronizing their execution
- For hazard-free shared Kernel —_
memory accesses 2
- Efficiently sharing data through
a low latency shared memory Block (1, 1)

+ Two threads from two
different blocks cannot
cooperate

Courtesy: NDVIA|

11/05/09
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of llinois, Urbana-Champaign

Block and Thread IDs

+ Threads and blocks have
IDs

- So each thread can decide
what data to work on

- Block ID: 1D or 2D
(blockIdx.x, blockIdx.y)

- Thread ID: 1D, 2D, or 3D
(threadIdx.{x,y,z})

+ Simplifies memory
addressing when processing
multidimensional data

- Image processing
- Solving PDEs on volumes

11/05/09
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

Device
Grid 1
Block Block
0,0 0)
Block Block Blnck
(n 1) (11 (z 1)
Block (1, 1)

Courtesy: NDVIA

THE
UNIVERSITY
OF UTAH

Hardware Implementation: A Set of SIMD
Multiprocessors

+ A device has a set of
multiprocessors

+ Each multiprocessor is a
set of 32-bit processors [
with a Single Instruction R
Multiple Data architecture
- Shared instruction unit

+ At each clock cycle, a stueton
multiprocessor)éxecu‘res e H Pwm‘i"’mm"ﬁ
the same instruction on a
group of threads called a
warp I

+ The number of threads ina
warp is the warp size

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 “N[VER“TY
ECE 498AL, University of lllinois, Urbana-Champaign UOF UTAH

Multiprocessor N

Hardware Execution Model

Device

I. SIMD Execution of warpsize=M e ———
threads (from single block) .
— Result is a set of instruction streams ‘ Multiprocessor 2

roughly equal to # blocks in thread
divided by warpsize

IT. Multithreaded Execution across
different instruction streams within
block

— Also possibly across different blocks if
there are more blocks than SMs

III. Each block mapped to single SM

— No direct interaction across SMs

Multiprocessor 1

11/11/09

Example SIMD Execution Example SIMD Execution
“Count 3" kernel function “Count 3" kernel function
d_out[threadIdx.x] = O; d_out[threadIdx.x] = O;
for (int i=0; i«<SIZE/BLOCKSIZE; i++) { for (int i=0; i«<SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE + threadIdx.x]; int val = d_in[i*BLOCKSIZE + threadIdx.x];

d_out[threadIdx.x] += compare(val, 3); d_out[threadIdx.x] += compare(val, 3);

} }

Each “core”
initializes
data from

addr based

on its own
threadIdx

Instruction
Unit

RUSIUITIN | DC 0, &(dout+
Unit threadldx)

THE THE
UUN[VERS[TY UUN[VERS[TY
OF UTAH OF UTAH

Example SIMD Execution Example SIMD Execution
“Count 3" kernel function "Count 3" kernel function
d_out[threadIdx.x] = O; d_out[threadIdx.x] = O;
for (int i=0; i«SIZE/BLOCKSIZE; i++) { for (int i=0; i«SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE + threadIdx.x]; int val = d_in[i*BLOCKSIZE + threadIdx.x];

d_out[threadIdx.x] += compare(val, 3); d_out[threadIdx.x] += compare(val, 3);

} }

/* i*BLOCKSIZE

Each “core”

“core" . erforms . +threadIdx */

ilzen s Rl /it i=0; */ P same Rl L 0C BLOCKSIZE R2
own R3 Ul LDCO, R3 operations MUL R1, R3, R2
from its own ADD R4, R1,RO

registers

Etc.

THE THE
u UNIVERSITY u UNIVERSITY
OF UTAH OF UTAH

11/11/09

SM Warp Scheduling

* SM hardware implements zero-
overhead Warp scheduling
— Warps whose next instruction has
its operands ready for consumption
are eligible for execution
— Eligible Warps are selected for
time execution on a prioritized

scheduling policy
m — All threads in a Warp execute the
same instruction when selected
M + 4 clock cycles needed to dispatch
the same instruction for all
threads in a Warp in 680
— If one global memory access is
needed for every 4 instructions
— A minimal of 13 Warps are needed
to fully tolerate 200-cycle memory

BRI deny

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaigh u

THE
UNIVERSITY
OF UTAH

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
out[threadIdx] += 100;

}
else {
out[threadIdx] += 10;
}
. compare
Instructio threadIdx,2

n
Unit

THE
u UNIVERSITY
OF UTAH

SIMD Execution of Control Flow

Control flow example
if (threadIdx.x >= 2){
out[threadIdx.x] += 100;

else {
out[threadIdx.x] += 10;

/* possibly predicated

QOSSN using CC */

(CC)LD R5,
&(out+threadIdx.x)

(CC) ADD R5, R5, 100

(CC) STR5,
&(out+threadIdx.x)

n
Unit

THE
u UNIVERSITY
OF UTAH

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
out[threadIdx] += 100;

else {
out[threadIdx] += 10;

/* possibly predicated

QOSSN using CC */

(nhot CC) LD R5,
&(out+threadIdx)

(not CC) ADD R5, R5, 10

(nhot CC) STR5,
&(out+threadIdx)

n
Unit

THE
u UNIVERSITY
OF UTAH

11/11/09

A Very Simple Execution Model

* No branch prediction
- Just evaluate branch targets and wait for resolution
- But wait is only a small number of cycles

* No speculation
- Only execute useful instructions

THE
u UNIVERSITY
OF UTAH

Terminology

- Divergent paths
- Different threads within a warp take different control flow
paths within a kernel function
- N divergent paths in a warp?

- An N-way divergent warﬁ is serially issued over the N
different paths using a hardware stack and per-thread
predication logic to only write back results from the threads
taking each divergent path.

- Performance decreases by about a factor of N

THE
u UNIVERSITY
OF UTAH

Hardware Implementation: Memory
Architecture

+ The local, global, constant, and
texture spaces are regions of
device memory

+ Each multiprocessor has:

- Aset of 32-bit registers per
processor
- On-chip shared memory

- Where the shared memory
space resides

- Aread-only constant cache

- To speed up access to the
constant memory space

- Aread-only texture cache

- To speed up access to the
texture memory space

Device

Multiprocessor N

| Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Global, constant, texture memories

+ The host can read/write

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 u

ECE 498AL, University of lllinois, Urbana-Champaign UNIVERSITY

OF UTAH

Programmer's View: Memory Spaces

Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory | Block(0,0) Block (1, 0)
- Read/write per-block shared memory
- Read/write per-grid global memory

- Read only per-grid constant memory ’ ’ ’ !

- Read only per-grid texture memory

Grid

Thread (0,0) Thread (1,0)‘ Thread (0, 0) Thread (1, 0)

global, constant, and
texture memory

THE
UNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign u

11/11/09

Constant Memory Example

* Signal recognition:

- Apply input signal (a vector) to a set of precomputed
transform matrices

- Compute MV, M,V, .., M,V

__global__ void ApplySignal (int M) {
__constant__ float d_signalVector[M]; float result = 0.0; /* register */
__device__ float R[N][M];
for (j=0; j<M; j++)
result += d_M[blockldx.x][threadldx.x][j]
d_signalVector(j];
R[blockldx.x][threadldx.x] = result;

__host__ void outerApplySignal () {
float *h_inputSignal;
dim3 dimGrid(N);
dim3 dimBlock(M);
cudaMemcpyToSymbol (d_signalVector,
h_inputSignal, M*sizeof{(float));
ApplySignal<<<dimGrid,dimBlock>>>(M);

THE
u UNIVERSITY
OF UTAH

Additional Detail

. Suﬁgose* each thread accesses different data from
constant memory oh same instruction

- Reuse across threads?

- Consider capacity of constant cache and locality

- Code transformation needed? (later in lecture)

- Cache latency proportional to number of accesses in a warp
- No reuse?

- Should not be in constant memory.

26
€S6963 L6: Memory Hierarchy |

THE
u UNIVERSITY
OF UTAH

Now Let's Look at Shared Memory

- Common Programming Pattern (5.1.2 of
CUDA manual)

- Load data into shared memory

- Synchronize (if necessary)

- Operate on data in shared memory
- Synchronize (if necessary)

- Write intermediate results to global
memory

- Repeat until done

Global memory

Familiar concept?

Mechanics of Using Shared Memory

+__shared___ type qualifier required

* Must be allocated from global/device function,
or as "extern”

* Examples:

extern __shared__ float d_s_array([]; __global__ void compute2() {
__shared__ float d_s_array[M];
/* a form of dynamic allocation */
/* MEMSIZE is size of per-block */
/* shared memory*/
__host__ void outerCompute() {
compute<<<gs,bs, MEMSIZE>>>(); /* write result back to global memory */
} d_g_array[j] = d_s_array[j];
__global__ void compute() { }
d_s_array[i] = ...;

} THE
u UNIVERSITY
OF UTAH

/* create or copy from global memory *
d_s_array[j] = ...;

11/11/09

Using Loop Transformations in GPU

Code Generation

Cod transformations Application
Conventional Architectures GPU
Tiling *Manage reuse in limited storage *Manage reuse in limited
storage
Partition parallel execution at
2 levels
Data-copy <Eliminate conflict misses in cache «Copy data to specialized
memory structures
Permutation *Reorder loop structure to enable other | *Reorder loop structure to
optimizations enable other optimizations
Unrolling <Exposes fine-grain parallelism by *Exposes fine-grain parallelism
replicating the loop body by replicating the loop body
coe

THE
u UNIVERSITY
OF UTAH

Tiling for Computation Mapping in GPUs

Bock{2)

ki [szl

2D blocks and threads per block arrangement

Code Optimization and Generation: Jacobi Relaxation

tila(0,1,TX,1, counted) |
ti1a(0,3,1Y,2, counted)

+i16(0,3,1,3,counted) |
ti16(0,5,1,5,counted)

(a) tile script

BLi-11[5-1] = 0.54(
alift]j) +
ali-110j) +
alil (3] +
alil(-11);

(b) original jacobi

for(i=0; i<(N/TK); i+)

for(j=0; J<WTN); j#)
for(x=0; x<TK; x++)
for(y=0; y<IV; y+4)
BITEei4x] (TY94y1=0.54(

alTwisxs2] [Thejty+] +
alTReitxt0] [TYajayri] +
alThwisxt] (TVej4ys2] +
alTkeisxet] [TY4jayho]);

(c) transformed jacobi

Code Optimization and Generation

cudalfalloc((void ##)karrayOutPr, 1022 + 1022 + 4);
cudaalloc((void +)karrayluPtr, 1024 + 1024 + 4);

N=1024 a, 1024 4 1024+ 4,
=32 dind dinlrid(1024/32, 1024/18);
V=16 diad dioBlock (32, 16);
original () Jacobi.GP<c<dinlrid, dirBlock>»> (arrayluiPtr, arraylber); @<
cudaize2(jacobi GPU, H, N, T8, TY 47 cudallencpy(b, arraylutPtr, 1022 + 1022 + 4, codaMencpyDavicsTohiogt);
cudaFrea(arrayutPir)
(a) CHILL script cudaFree(arrayluPr)

int 1 = blockIdx.x; int €2 = blockIdx.y;
int 3 = threadldx.x; int t4 = threadldr.y;
if(t4 > 1021 + (16 » £2))

return;

b[320t1+t3] [164t2+td) = 0.5 (
al32+t1+03+42] [16422+t441] +
a[32+t1+t3+0] [16422+t441] +
al32+t1+t3+1] [16422+1442] +
a[32et1+t3+1] [16422+24+0]) ;

(¢) generated kernel function

(b) generated kernel call

—global_ void jacobiGPU(float (+b)([1022], float (+a)([1024])

11/11/09

Bandwidth Yo Shared Memory:
Parallel Memory Accesses

+ Consider each thread accessing a different location
in shared memory

+ Bandwidth maximized if each one is able to proceed
in parallel
* Hardware to support this

- Banked memory: each bank can support an access on every
memory cycle

THE
u UNIVERSITY
OF UTAH

Bank Addressing Examples

- No Bank Conflicts + No Bank Conflicts
- Linear addressing - Random 1:1 Permutation
stride ==1

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 0
Thread 1
Thread 2

]
]
Thread 4 -
]
]

Thread 5
Thread 6
Thread 7

Thread 5
Thread 6 ‘

Thread 7

Thread 15 Bank 15 Thread 15 Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

THE
i i inoi - i UNIVERSITY
ECE 498AL, University of lllinois, Urbana-Champaign UOF UTAH

Bank Addressing Examples

+ 2-way Bank Conflicts

- Linear addressing
stride == 2

+ 8-way Bank Conflicts

- Linear addressing
stride == 8

Thread 0 Thread 0 x5,
Thread 1 -‘ Thread 1 V
) ‘, Thread 2 ’
Thread 3 ‘ ‘ Thread 3. V!
Thread 4 ", Thread 4 '\
Thread 5 \

/ Thread 6 »

Thread 8 Moz 7] Banko

Thread 9
Thread 10
Thread 11

Bank 15
THE
u UNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu 32007-2009

COC AQQAL 1ini it af lllinaic 1k Oh

Thread 15

How addresses map to banks on 680

+ Each bank has a bandwidth of 32 bits per clock cycle

+ Successive 32-bit words are assigned to successive
banks
+ 680 has 16 banks
- So bank = address % 16
- Same as the size of a half-warp

- No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

THE
u UNIVERSITY
OF UTAH

11/11/09

Shared memory bank conflicts

+ Shared memory is as fast as registers if there are no
bank conflicts

+ The fast case:

- If all threads of a half-warp access different banks, there
is no bank conflict

- If all threads of a half-warp access the identical address,
there is no bank conflict (broadcast)
- The slow case:

- Bank Conflict: multiple threads in the same half-warp access
the same bank

- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

THE
o) .) UNIVERSITY
ECE 498AL, University of lllinois, Urbana-Champaign UOF UTAH

Global Memory Accesses

* Each thread issues memory accesses to data types of
varying sizes, perhaps as small as 1 byte entities

* Given an address to load or store memory refurns/
updates “segments” of either 32 bytes, 64 bytes or 128
bytes

* Maximizing bandwidth:

- Operate on an entire 128 byte segment for each memory transfer

THE
u UNIVERSITY
OF UTAH

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA
Manual 312 1) pute capabilify 1.27 (

* Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 bytesegment, depending on
data type)

* Find other active threads requesting addresses within
that segment and coalesce

* Reduce transaction size if possible
+ Access memory and mark threads as “inactive”
* Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms

THE
u UNIVERSITY
OF UTAH

Memory Layout of a Matrix in C

[A

Access
direction in My, My, My, My,
Kernel
code M2 My, My, M:«‘z

My3 M3 Myz Mgy

33

Time Period 1 Time Period 2
Ty Ty Ty T, (|T, T, T3 T,

ARARRENA

B Moy My g Moy Mgy Mo, Myp Myp M3y Mog My M3 My

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 URIVERSITY
ECE 498AL, University of lllinois, Urbana-Champaign ucp UTAH

10

Memory Layout of a Matrix in C

O P

Access il B T Ty
irection in

directio Mo My My My,

Kernel

code Moz My, My, My,

MO‘S M1.3 MZ} M3‘3
Time Period 2
T, T, T, T,

Tifne Period 1
T T, Ty T,

IR A

Moz My My3 My,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

-
ECE 498AL, University of llinois, Urbana-Champaign u OF Ve Y

Summary of Lecture

* A deeper probe of performance issues
- Execution model
- Control flow
- Heterogeneous memory hierarchy
- Locality and bandwidth
- Tiling for CUDA code generation

