
11/5/09

1

CS6963

L18: Introduction to
CUDA

November 5, 2009

Administrative
• Homework assignment 3 will be posted today (after

class)
• Due, Thursday, November 5 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw3 <gzipped tar file>”
NEW: VTUNE PORTION IS EXTRA CREDIT!
• Mailing list set up: cs4961@list.eng.utah.edu

CS4961 2

A Few Words About Final Project
• Purpose:

- A chance to dig in deeper into a parallel programming model
and explore concepts.

-  Present results to work on communication of technical ideas

• Write a non-trivial parallel program that combines
two parallel programming languages/models. In some
cases, just do two separate implementations.

- OpenMP + SSE-3
- OpenMP + CUDA (but need to do this in separate parts of

the code)
- TBB + SSE-3
- MPI + OpenMP
- MPI + SSE-3
- MPI + CUDA

• Present results in a poster session on the last day of
class CS4961 3

Example Projects
• Look in the textbook or on-line

-  Recall Red/Blue from Ch. 4
-  Implement in MPI (+ SSE-3)
-  Implement main computation in CUDA

- Algorithms from Ch. 5
- SOR from Ch. 7

-  CUDA implementation?
-  FFT from Ch. 10
- Jacobi from Ch. 10
- Graph algorithms
-  Image and signal processing algorithms
- Other domains…

10/29/2009 CS4961 4

11/5/09

2

Outline

• Overview of the CUDA Programming Model for
NVIDIA systems

-  Presentation of basic syntax

• Simple working examples
•  See http://www.cs.utah.edu/~mhall/cs6963s09

• Architecture

• Execution Model

• Heterogeneous Memory Hierarchy
This lecture includes slides provided by:
 Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
 see http://courses.ece.uiuc.edu/ece498/al1/

 and Austin Robison (NVIDIA)
11/05/09

Reading
• David Kirk and Wen-mei Hwu manuscript (in progress)

-  http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html

• CUDA 2.x Manual, particularly Chapters 2 and 4
(download from nvidia.com/cudazone)

• Nice series from Dr. Dobbs Journal by Rob Farber
-  http://www.ddj.com/cpp/207200659

11/05/09

CUDA (Compute Unified Device Architecture)
• Data-parallel programming interface to GPU

- Data to be operated on is discretized into independent partition of
memory

-  Each thread performs roughly same computation to different
partition of data

- When appropriate, easy to express and very efficient parallelization

• Programmer expresses
- Thread programs to be launched on GPU, and how to launch
- Data organization and movement between host and GPU
- Synchronization, memory management, testing, …

• CUDA is one of first to support heterogeneous
architectures (more later in the semester)

• CUDA environment
-  Compiler, run-time utilities, libraries, emulation, performance

11/05/09

What Programmer Expresses in CUDA

•  Computation partitioning (where does computation occur?)
- Declarations on functions __host__, __global__, __device__
- Mapping of thread programs to device: compute <<<gs, bs>>>(<args>)

• Data partitioning (where does data reside, who may access it and
how?)

•  Declarations on data __shared__, __device__, __constant__, …

• Data management and orchestration
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

•  Concurrency management
-  E.g. __synchthreads()

P

M

P

H
O

S
T

 (C
P

U
)

M D
E

V
IC

E
 (G

P
U

)

Interconnect between devices and memories

CS6963 11/05/09

11/5/09

3

Minimal Extensions to C + API
•  Declspecs

-  global, device,
shared, local,
constant

•  Keywords
-  threadIdx, blockIdx

•  Intrinsics
-  __syncthreads

•  Runtime API
-  Memory, symbol,
execution management

•  Function launch

__device__ float filter[N];

__global__ void convolve (float *image)
{

 __shared__ float region[M];
 ...

region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11/05/09

NVCC Compiler’s Role: Partition Code and
Compile for Device

mycode.cu

__device__ dfunc() {
 int ddata;
}

__global__ gfunc() {
 int gdata;
}

Main() { }
__host__ hfunc () {
 int hdata;
 <<<gfunc(g,b,m)>>>();
}

D
ev

ic
e

O
nl

y
In

te
rfa

ce

H
os

t O
nl

y

int main_data;
__shared__ int sdata;

Main() {}
__host__ hfunc () {
 int hdata;
<<<gfunc(g,b,m)>>>
();
}

__global__ gfunc() {
 int gdata;
}

Compiled by native
compiler: gcc, icc, cc

__shared__ sdata;

__device__ dfunc() {
 int ddata;
}

Compiled by nvcc
compiler

int main_data;

11/05/09

CUDA Programming Model:
A Highly Multithreaded Coprocessor
•  The GPU is viewed as a compute device that:

-  Is a coprocessor to the CPU or host
-  Has its own DRAM (device memory)
-  Runs many threads in parallel

•  Data-parallel portions of an application are executed
on the device as kernels which run in parallel on many
threads

•  Differences between GPU and CPU threads
-  GPU threads are extremely lightweight

-  Very little creation overhead
-  GPU needs 1000s of threads for full efficiency

-  Multi-core CPU needs only a few

11/05/09

Thread Batching: Grids and Blocks
•  A kernel is executed as a grid

of thread blocks
-  All threads share data

memory space

•  A thread block is a batch of
threads that can cooperate
with each other by:
-  Synchronizing their execution

-  For hazard-free shared
memory accesses

-  Efficiently sharing data through
a low latency shared memory

•  Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11/05/09

11/5/09

4

Block and Thread IDs

•  Threads and blocks have
IDs
-  So each thread can decide

what data to work on
-  Block ID: 1D or 2D

(blockIdx.x, blockIdx.y)
-  Thread ID: 1D, 2D, or 3D

(threadIdx.{x,y,z})

•  Simplifies memory
addressing when processing
multidimensional data
-  Image processing
-  Solving PDEs on volumes
-  …

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11/05/09

Simple working code example
• Goal for this example:

-  Really simple but illustrative of key concepts
-  Fits in one file with simple compile command
-  Can absorb during lecture

• What does it do?
- Scan elements of array of numbers (any of 0 to 9)
- How many times does “3” appear?
- Array of 16 elements, each thread examines 4 elements, 1

block in grid, 1 grid

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data
distribution

11/05/09

Working through an example
• Like MPI, we’ll write some message-passing pseudo

code for Count3 (from Lecture 4)

CS4961 15

CUDA Pseudo-Code

MAIN PROGRAM:
Initialization
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

HOST FUNCTION:
Allocate memory on device for
copy of input and output
Copy input to device
Set up grid/block
Call global function
Copy device output to host

GLOBAL FUNCTION:
Thread scans subset of array elements
Call device function to compare with “3”
Compute local result

DEVICE FUNCTION:
Compare current element

and “3”
Return 1 if same, else 0

11/05/09

11/5/09

5

Main Program: Preliminaries

MAIN PROGRAM:
Initialization
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

int main(int argc, char **argv)
{
 int *in_array, *out_array;
 …
}

11/05/09

Main Program: Invoke Global Function

MAIN PROGRAM:
Initialization (OMIT)
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute

 (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
 int *in_array, *out_array;
 /* initialization */ …
 outer_compute(in_array, out_array);
 …
}

11/05/09

Main Program: Calculate Output & Print Result

MAIN PROGRAM:
Initialization (OMIT)
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute

 (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
 int *in_array, *out_array;
 int sum = 0;
 /* initialization */ …
 outer_compute(in_array, out_array);
 for (int i=0; i<BLOCKSIZE; i++) {
 sum+=out_array[i];
 }
 printf (”Result = %d\n",sum);
}

11/05/09

Host Function: Preliminaries & Allocation

HOST FUNCTION:
Allocate memory on device for
copy of input and output
Copy input to device
Set up grid/block
Call global function
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 …
}

11/05/09

11/5/09

6

Host Function: Copy Data To/From Host

HOST FUNCTION:
Allocate memory on device for
copy of input and output
Copy input to device
Set up grid/block
Call global function
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 cudaMemcpy(d_in_array, h_in_array,
 SIZE*sizeof(int),
 cudaMemcpyHostToDevice);

 … do computation ...
 cudaMemcpy(h_out_array,d_out_array,

 BLOCKSIZE*sizeof(int),
 cudaMemcpyDeviceToHost);

}

11/05/09

Host Function: Setup & Call Global Function

HOST FUNCTION:
Allocate memory on device for
copy of input and output
Copy input to device
Set up grid/block
Call global function
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 cudaMemcpy(d_in_array, h_in_array,
 SIZE*sizeof(int),
 cudaMemcpyHostToDevice);

 compute<<<(1,BLOCKSIZE,0)>>>
 (d_in_array, d_out_array);

 cudaMemcpy(h_out_array, d_out_array,
 BLOCKSIZE*sizeof(int),
 cudaMemcpyDeviceToHost);

}
11/05/09

Global Function

GLOBAL FUNCTION:
Thread scans subset of array

elements
Call device function to compare

with “3”
Compute local result

__global__ void compute(int
*d_in,int *d_out) {

 d_out[threadIdx.x] = 0;
 for (int i=0; i<SIZE/BLOCKSIZE;

 i++)
 {
 int val = d_in[i*BLOCKSIZE +

threadIdx.x];
 d_out[threadIdx.x] +=

compare(val, 3);
 }
}

11/05/09

Device Function

DEVICE FUNCTION:
Compare current element

and “3”
Return 1 if same, else 0

__device__ int
compare(int a, int b) {

 if (a == b) return 1;
 return 0;
}

11/05/09

11/5/09

7

Another Example: Adding Two Matrices
CPU C program
void add_matrix_cpu(float *a, float *b,

float *c, int N)
{
int i, j, index;
for (i=0;i<N;i++) {
 for (j=0;j<N;j++) {

 index =i+j*N;
 c[index]=a[index]+b[index];
 }
 }
}

void main() {

 add_matrix(a,b,c,N);
}

CUDA C program
__global__ void add_matrix_gpu(float *a,
float *b, float *c, int N)
{
 int i =blockIdx.x*blockDim.x+threadIdx.x;
 int j=blockIdx.y*blockDim.y+threadIdx.y;
 int index =i+j*N;
 if(i <N && j <N)
 c[index]=a[index]+b[index];
}

void main() {
 dim3 dimBlock(blocksize,blocksize);
 dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

add_matrix_gpu<<<dimGrid,dimBlock>>>(a,b,c
,N);
}

Example source: Austin Robison, NVIDIA
11/05/09

Closer Inspection of Computation and Data
Partitioning

• Define 2-d set of blocks, and 2-d set of threads per
block

• Each thread identifies what element of the matrix it
operates on

 dim3 dimBlock(blocksize,blocksize);
 dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

 int i=blockIdx.x*blockDim.x+threadIdx.x;
 int j=blockIdx.y*blockDim.y+threadIdx.y;
 int index =i+j*N;
 if(i <N && j <N)
 c[index]=a[index]+b[index];

11/05/09

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation: A Set of SIMD
Multiprocessors
•  A device has a set of

multiprocessors
•  Each multiprocessor is a

set of 32-bit processors
with a Single Instruction
Multiple Data architecture
-  Shared instruction unit

•  At each clock cycle, a
multiprocessor executes
the same instruction on a
group of threads called a
warp

•  The number of threads in a
warp is the warp size

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Instruction
Unit

Processor 1
…

Processor 2 Processor M

Hardware Execution Model

I. SIMD Execution of warpsize=M
threads (from single block)

–  Result is a set of instruction streams
roughly equal to # blocks in thread
divided by warpsize

II. Multithreaded Execution across
different instruction streams within
block

–  Also possibly across different blocks if
there are more blocks than SMs

III. Each block mapped to single SM
–  No direct interaction across SMs

Device 

Mul*processor N 

Mul*processor 2 
Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

11/5/09

8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation: Memory
Architecture

•  The local, global, constant, and
texture spaces are regions of
device memory

•  Each multiprocessor has:
-  A set of 32-bit registers per

processor
-  On-chip shared memory

-  Where the shared memory
space resides

-  A read-only constant cache
-  To speed up access to the

constant memory space
-  A read-only texture cache

-  To speed up access to the
texture memory space

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Global, constant, texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Programmer’s View: Memory Spaces
•  Each thread can:

-  Read/write per-thread registers
-  Read/write per-thread local memory
-  Read/write per-block shared memory
-  Read/write per-grid global memory
-  Read only per-grid constant memory
-  Read only per-grid texture memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

•  The host can read/write
global, constant, and
texture memory

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1

Reg

... 

Memory 

Reg Reg threadIdx 

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1
... 

Memory 

Reg Reg Reg

LDC 0, &(dout+ 
                 threadIdx) 

threadIdx threadIdx 

+  +  + 

&dout  &dout  &dout 

Each “core”
initializes
data from
addr based
on its own
threadIdx

11/5/09

9

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1
... 

Memory 

Reg Reg Reg

/* int i=0; */ 
LDC 0, R3 

Each “core”
initializes its

own R3

0  0  0 

Example SIMD Execution

“Count 3” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 3);
}

P0
Instruction

Unit P! PM-1

Reg

... 

Memory 

Reg Reg /* i*BLOCKSIZE
 + threadIdx */
LDC BLOCKSIZE,R2
MUL R1, R3, R2
ADD R4, R1, RO 

Each “core”
performs

same
operations

from its own
registers

Etc. 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

SM Warp Scheduling

•  SM hardware implements zero-
overhead Warp scheduling
–  Warps whose next instruction has

its operands ready for consumption
are eligible for execution

–  Eligible Warps are selected for
execution on a prioritized
scheduling policy

–  All threads in a Warp execute the
same instruction when selected

•  4 clock cycles needed to dispatch
the same instruction for all
threads in a Warp in G80
–  If one global memory access is

needed for every 4 instructions
–  A minimal of 13 Warps are needed

to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

Summary of Lecture
• Introduction to CUDA
• Essentially, a few extensions to C + API supporting

heterogeneous data-parallel CPU+GPU execution
-  Computation partitioning
- Data partititioning (parts of this implied by decomposition into

threads)
- Data organization and management
-  Concurrency management

• Compiler nvcc takes as input a .cu program and produces
-  C Code for host processor (CPU), compiled by native C compiler
-  Code for device processor (GPU), compiled by nvcc compiler

• Two examples
-  Parallel reduction
-  Embarassingly/Pleasingly parallel computation

11/05/09

