L18: Introduction to
CUDA

November 5, 2009

CS6963

Administrative

*+ Homework assignment 3 will be posted today (after
class)

* Due, Thursday, November 5 before class
- Use the “handin” program on the CADE machines
- Use the following command:

“handin cs4961 hw3 <gzipped tar file>"
NEW: VTUNE PORTION IS EXTRA CREDIT!
- Mailing list set up: cs4961@list.eng.utah.edu

THe
Ccs4961 5 u UNIVERSITY
OF UTAH

A Few Words About Final Project

* Purpose:

- A chance to dig in deeper into a parallel programming model
and explore concepts.

- Present results to work on communication of technical ideas
+ Write a non-trivial parallel program that combines

two parallel programming languages/models. In some
cases, just do two separate implementations.

- OpenMP + SSE-3

- OpenMP + CUDA (but need to do this in separate parts of
the code)

- TBB + SSE-3
- MPI + OpenMP
- MPI + SSE-3
- MPI + CUDA

* Present results in a poster session on the last day of

class
054961 3 UUN[VERS[TY
OF UTAH

Example Projects

* Look in the textbook or on-line
- Recall Red/Blue from Ch. 4
- Implement in MPI (+ SSE-3)
- Implement main computation in CUDA
- Algorithms from Ch. 5
- SOR from Ch. 7
- CUDA implementation?
- FFT from Ch. 10
- Jacobi from Ch. 10
- Graph algorithms
- Image and signal processing algorithms
- Other domains...

10/29/2009 Cs4961

THE
4 u UNIVERSITY
OF UTAH

11/5/09

11/5/09

Outline Reading

+ Overview of the CUDA Programming Model for) Dav;irKl/r;k am: V\;en—me/lct\g: :nau::sckm:’r éln'zr‘zg:ess)
- p://www.Toodoc.com. -TexTbooK-by-David-Kirk-
NVIDIA systems from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.htm

. . + CUDA 2.x Manual, particularly Chapters 2 and 4
* Simple working examples (download from nvidia.com/cudazone)

+ See http://www.cs.utah.edu/~mhall/cs6963s09

- Presentation of basic syntax

* Nice series from Dr. Dobbs Journal by Rob Farber
* Architecture - http://www.ddj.com/cpp/207200659

+ Execution Model

+ Heterogeneous Memory Hierarchy
This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.uiuc.edu/ece498/al1/

and Austin Robison (NVIDIA) THE 11/05/09 Ok
ol u e — u UNIVERSITY
OF UTAH OF UTAH

CUDA (Compute Unified Device Architecture) What Programmer Expresses in CUDA
L =) >
° Dafa-para/le/ programming interface to GPU % Interconnect between devices and memories %
- Data to be operated on is discretized into independent partition of = o
memory b o
- Each thread performs roughly same computation to different % O o
partition of data o
- When appropriate, easy to express and very efficient parallelization - Computation partitioning (where does computation occur?)
- Programmer expresses - Declarations on functions __host__, __global__, __device___
- Thread programs to be launched on GPU, and how to launch - Mapping of thread programs to device: compute <««gs, bs>»>(<args>)
- Data organization and movement between host and GPU * Data)par"ri‘rioning (where does data reside, who may access it and
- Synchronization, memory management, testing, ... how?
. N + Declarations on data __shared__, _ device_ ,___constant__, ..
* CUDA is one of first to support heterogeneous)
architectures (more later in the semesfter) - Data management and orchestration
. CUDA environment + Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)
- Compiler, run-time utilities, libraries, emulation, performance - Concurrency management
- E.g. __synchthreads()

s s
11/05/09 UUN[VERS[TY C569631/05109 UUN[VERS[TY
OF UTAH OF UTAH

Minimal Extensions to C + APT
- Declspecs __device__ float filter[N];
- global, device, E
shared, local, __global _ void convolve (float *image)
constant
_ shared float region([M];
+ Keywords
- threadIdx, blockIdx i . (cnreadrax] = image(il;

+ Intrinsics
- __syncthreads

__syncthreads ()

image[j] = result;
. }
* Runtime API
- Memory, symbol,
execution management

// Allocate GPU memory
void *myimage = cudaMalloc (bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

THE
u UNIVERSITY
OF UTAH

+ Function launch

11/05/09
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

NVCC Compller s Role: Partition Code and
Compile for Device
mycode.cu Compiled by native Compiled by nvee
int main_data: compiler: gcc, icc, cc compiler
sharea int sdata;
Main() { } =
~ host__ hfunc () { S int main_data; _ shared__ sdata;
int hdata; % X
N T Main() {}
)<<<gfunc(g bm)>>>(); __host__ hfunc () {
int hdata;
3 <<<gfunc(g,b,m)>>>
3 .
s
=]
__device__ dfunc() { > __device__ dfunc() {
int ddata; 5 int ddata;
} 8 }
3
o

11/05/09

THE
u UNIVERSITY
OF UTAH

CUDA Programming Model:

A Highly Multithreaded Coprocessor

+ The GPU is viewed as a compute device that:
- Isacoprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel

+ Data-parallel portions of an oﬁplicoﬁon are executed
on the device as kernels which run in parallel on many
threads

- Differences between GPU and CPU threads
- GPU threads are extremely lightweight
- Very little creation overhead
- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

11/05/09 UUN[VERS[TY
OF UTAH

Thread Batching: 6rids and Blocks

* Akernel is executed as a grid
of thread blocks Host Device
- All threads share data Grid 1
+ A thread block is a batch of QO | Lol][0
threads that can cooperate
with each other by:
- Synchronizing their execution

- For hazard-free shared
memory accesses

- Efficiently sharing data through
a low latency shared memory

Kernel —
2NN

Block (1, 1)

+ Two threads from two
different blocks cannot
cooperate

Courtesy: NDVIA|

11/05/09

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

11/5/09

Block and Thread IDs

+ Threads and blocks have Eewite
IDs Grid 1
- So each thread can decide Block Block Block
what data to work on (0) @0 | (@6)
- Block ID: 10 or 2D ookl

(blockIdx.x, blockIdx.y)

- Thread ID: 1D, 2D, or 3D
(threadIdx.{x,y,z})

Block (1, 1)

+ Simplifies memory
addressing when processing
multidimensional data

- Image processing
- Solving PDEs on volumes

Courtesy: NDVIA

11/05/09
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 u THE

ECE 498AL, University of llinois, Urbana-Champaign on [L}’TEARI_% ITY

Simple working code example

* Goal for this example:
- Really simple but illustrative of key concepts
- Fits in one file with simple compile command
- Can absorb during lecture

+ What does it do?
- Scan elements of array of humbers (any of O to 9)
- How many times does "3" appear?

- Array of 16 elemenfs each thread examines 4 elements, 1
block in grid, 1 grid

806661000 /80070

threadldx.x = 0 examines in_array elements 0, 4, 8, 12

threadldx.x = 1 examines in_array elements 1, 5, 9, 13 Knoyvn asa
cyclic data
threadldx.x = 3 examines in_array elements 3, 7, 11, 15 distribution
11/05/09 THE
RSIT!
T Ghpasar

Working through an example
* Like MPT, we'll write some message-passing pseudo
code for Count3 (from Lecture 4
1 int array[length]; The data is global
2 int t; Number of desired threads
3 int total; Result of computation, grand total
4 forall(j in(0..t-1))
5 {
6 int size=mySize(array,0); Figure size of local part of global data
7 int myData[size]=localize(array[]);
Associate my part of global data with
local variable
8 int i, priv_count=0; Local accumulation
9 for(i=0; i<size; i++)
10 {
11 if (myData[i]==3)
12 {
13 priv_count++;
14 }
15 }
16 total =+/priv_count; ompute grand total
17)

wr
84961 15 UUN[VERS[TY
OF UTAH

CUDA Pseudo-Code
MAIN PROGRAM:

Initialization

+ Allocate memor?/ on host for
input and outpu

. ASS|_?n random numbers to
inpuf array

Call host function

Calculate final output from
per-thread output

Print result

GLOBAL FUNCTION:

Thread scans subset of array elements

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Set up grid/block

Call global function

Copy device output to host

DEVICE FUNCTION:

Compa‘r‘e current element
g

Return 1if same, else O

THE
u UNIVERSITY
OF UTAH

Call device function to compare with "3"
Compute local result

11/05/09

11/5/09

Main Program: Preliminaries

MAIN PROGRAM: #include <stdio.h>
Initialization #define SIZE 16

+ Allocate memory on host for #define BLOCKSIZE 4
input and outpu

’ ﬁ;ﬁ’gg;fgydm UMBErS IO int main(int arge, char **argv)

Call host function {

Calculate final output from
per-thread output

int *in_array, *out_array:

Print result }

T
11/05/09 u UNIVERSITY
OF UTAH

Main Program: Invoke Global Function

MAIN PROGRAM: #include <stdio.h>

R #define SIZE 16
fnitialization (OMIT) #define BLOCKSIZE 4
+ Allocate memory on host for

__host__ void outer_compute
mpufr and outpu int *in_arr, int *o%f_ar'r‘):
. Assrgn random numbers to
inpuf array int main(int argc, char **argv)
Call host function {

Calculate final output from
per-thread output

Print result

int *in_array, *out_array;
/* initialization */ ...
outer_compute(in_array, out_array);

T
11/05/09 u UNIVERSITY
OF UTAH

Main Program: Calculate Output & Print Result

MAIN PROGRAM: #include <stdio.h>

Initialization (OMIT) #detine SIZE 16

#define BLOCKSIZE 4
+ Allocate memory on host for .
input and outpm}l __host__ void outer_compute

) int *in_arr, int *out_arr);
. Assr?n random numbers to _(_ - —arr)

inpuf array int main(int argc, char **argv)
Call host function {

Calculate final output from
per-thread output

Print result

int *in_array, *out_array;

int sum = 0;

/* initialization */ ...

outer_compute(in_array, out_array);

for (int i=0; ikBLOCKSIZE; i++) {
sum+=out_array[i].

printf ("Result = %d\n" sum);

wr
11/05/09 UUN[VERS[TY
OF UTAH

Host Function: Preliminaries & Allocation
HOST FUNCTION:

Allocate memory on device for
copy of input and output

host___ void outer_compute (int
“*h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array;
Copy input to device
Set up grid/block
Call global function

cudaMaIloci(v_oid **) &d_in_array,
SIZE*sizeof(int));

cudaMalIocsgvoid **) &d_out_array,
BLOC i

Copy device output to host SIZE*sizeof(int));

wr
11/05/09 UUN[VERS[TY
OF UTAH

11/5/09

Host Function: Copy Data To/From Host

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Set up grid/block

Call global function

Copy device output to host

host__ void outer_compute (int
h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array;

cuda/\/\allocg(votd **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc%vmd **) &d_out_array,
SIZE*sizeof(int));

cuanemc x(d in_array, h_in_array,
SIZE*sizeof(int),
cudaMemcpyHostToDevice);

do computation ..

cudaMemc&)(l h ouT array,d_out_array,

TZE*5izeo 1(

cudaMemcpyDevice ToHost);

Host Function: Setup & Call Global Function
HOST FUNCTION: host__ void outer_compute (int

“*h_in_array, int *h_out_array) {

Allocate memory on device for int *d in *d out
copy of input ané output I _in_array, *d_ouf_array:

Copy input to device CudaMcIlocL(vmd *x) &d in_array,
Set up grid/block SIZE™sizeof(int))

cuda/\/\a!loc%voxd **) &d_out_array,

SIZE*sizeof(inT));

cudaMemcpy(d_in_array, h_in_array,
SIZ ’Ys(lzeo int) v /
cudaMemcpyHos’rToDevnce)

Call global function
Copy device output to host

compute<<<(1,BLOCKSIZE 0)>>>
(d_in_array, d_out_array);

cuda/\/\emcgyg\ out_array, d_out_array,

IZE*Sizeo ‘?”
cudaMemcpyDevice ToHost);

}
11/05/09 u g“l;\l IVERSITY /05109 u g‘;’ e
Global Function Device Function
: lobal id te(int
6LOBAL FUNCTION AT a0 co)rr{\pu n DEVICE FUNCTION: device__int

Thread scans subset of array
elements

Call device function to compare
with *3"

Compute local result

11/05/09

d_out[threadIdx.x] = O;
for (int i:)O: i«SIZE/BLOCKSIZE;
i++

{

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d ouT[ThreadIdx X] +=
compare(val, 3);

}

THE
u UNIVERSITY
OF UTAH

compar‘Z("n‘r a, int b) {
if (a==b) return1;
return O;

}

Compgre, current element
and "3

Return 1if same, else O

wr
11/05/09 UUN[VERS[TY
OF UTAH

11/5/09

Another Example: Adding Two Matrices

CUDA C program

CPU C program lobal id add . float *
void uddﬁm?;:iﬁ) cpu(float *a, float *b, outo *cb'_'ﬂ::;‘ "g, ﬁpﬁr)rlx_gpu(oat "a.

float {
fm i, j. index; int i =blockIdx.x*blockDim.x+threadIdx.x:
for (i=0:i<N;ie+) { int j=blockIdx.y*blockDim.y+threadIdx.y:
for (=0:§<N:j+) { int index =i+j*N:
. L if(i <N && j <N)
index =i+j*N; § ’ . .
c[index]=a[index]+b[index]: clindex]=alindex]+blindex]:
}
} N
} void main() {
dim3 dimBlock(blocksize,blocksize);
. . dim3 dim6rid(N/dimBlock.x,N/dimBlock.y):
void main() {

..... add_matrix_gpu«< < <dim6Grid,dimBlock>>>(a,b,c
add_matrix(a,b,c,N); N):
} }

Examplewswég?(/:ggAuslin Robison, NVIDIA

THE
U UNIVERSITY
OF UTAH

Closer Inspection of Computation and Dafa
Partitioning

. Elefi'?e 2-d set of blocks, and 2-d set of threads per
oc

dim3 dimBlock(blocksize,blocksize);
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

+ Each thread identifies what element of the matrix it
operates on

int i=blockldx.x*blockDim.x+threadldx.x;

int j=blockldx.y*blockDim.y+threadldx.y;

int index =i+j*N;

if(i <N &&j <N)
c[index]=a[index]+b[index];

=
11/05/09 U UNIVERSITY
OF UTAH

Hardware Implementation: A Set of SIMD
Multiprocessors

+ A device has a set of
multiprocessors

+ Each multiprocessor is a
set of 32-bit processors
with a Single Instruction
Multiple Data architecture
- Shared instruction unit

+ At each clock cycle, a stueton
multiprocessor)éxecu’res procestort H PWWE‘PWW{
the same instruction on a
group of threads called a
warp I

+ The number of threads ina
warp is the warp size

Multiprocessor N

‘ Multiprocessor 2

Multiprocessor 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

THE
u UNIVERSITY
OF UTAH

Hardware Execution Model

Device

I. SIMD Execution of warpsize=M
threads (from single block)
— Result is a set of instruction streams
roughly equal to # blocks in thread
divided by warpsize

Multiprocessor N

‘ Multiprocessor 2

Multiprocessor 1

IT. Multithreaded Execution across
different instruction streams within
block

— Also possibly across different blocks if
there are more blocks than SMs

III. Each block mapped to single SM

— No direct interaction across SMs

THE
u UNIVERSITY
OF UTAH

11/5/09

Hardware Implementation: Memory

Architecture

Device

The local, global, constant, and e
texture spaces are regions of o
device memory .

. ‘ Multiprocessor
Each multiprocessor has: Moitprocsecory]

- Aset of 32-bit registers per
processor

- On-chip shared memory

- Where the shared memory
space resides

- Aread-only constant cache

- To speed up access to the
constant memory space

- Aread-only texture cache

- To speed up access to the
texture memory space

Global, constant, textur

ECE 498AL, University of lllinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 u

Programmer's View: Memory Spaces

+ Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory | Block(0,0) Block (1, 0)
- Read/write per-block shared memory
- Read/write per-grid global memory

- Read only per-grid constant memory ’ ’ ’ !

- Read only per-grid texture memory

Grid

Thread (0, 0) Thread (1,0)‘ Thread (0, 0) Thread (1, 0)

+ The host can read/write
global, constant, and
texture memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

Example SIMD Execution

"Count 3" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 3);
}

Instruction
Unit

Example SIMD Execution

"Count 3" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 3);
}

Each “core”

initializes RUSIUITUN | DC 0, &(dout+
data from : Unit ’ hreadid
addr based hreadic)
on its own

threadIdx

THE
u UNIVERSITY
OF UTAH

Example SIMD Execution

“Count 3" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i«<SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 3);
}

Each “core”
initializes its
own R3

Instruction WESINEEIEY]
Unit LDCO, R3

THE
u UNIVERSITY
OF UTAH

“Count 3" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {

}

Example SIMD Execution

int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 3);

/* i*BLOCKSIZE
+ threadIdx */

Each “core”

erforms :
S BN | DC BLOCKSTZE R2
operations MUL R1, R3, R2
from its own ADD R4, R1,RO

registers

Etc.

THE
u UNIVERSITY
OF UTAH

SM Warp Scheduling

SM hardware implements zero-

overhead Warp scheduling

— Warps whose next instruction has
its operands ready for consumption
are eligible for execution

— Eligible Warps are selected for
execution on a prioritized
scheduling policy

— All threads in a Warp execute the
same instruction when selected

4 clock cycles needed to dispatch

the same instruction for all

threads in a Warp in 680

— If one global memory access is
neededgfor every 4 instructions

— A minimal of 13 Warps are needed
to fully tolerate 200-cycle memory

latency
e
u UNIVERSITY
OF UTAH

wm

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Summary of Lecture
+ Infroduction to CUDA
+ Essentially, a few extensions to C + APT supporting
heterogeneous data-parallel CPU+GPU execution
- Computation partitioning

- Data partititioning (parts of this implied by decomposition into
threads)

- Data organization and management
- Concurrency management

+ Compiler nvcc takes as input a .cu program and produces
- C Code for host processor (CPU), compiled by native C compiler
- Code for device processor (GPU), compiled by nvcc compiler

* Two examples
- Parallel reduction

- Embarassingly/Pleasingly parallel computation
11/05/09

THE
u UNIVERSITY
OF UTAH

11/5/09

