
11/3/09

1

11/03/2009 CS4961

CS4961 Parallel Programming 

Lecture 17:  
 Message Passing, cont. 

Introduction to CUDA  

Mary Hall 
November 3, 2009  

1

Administrative
• Homework assignment 3
• Due, Thursday, November 5 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw3 <gzipped tar file>”
OMIT VTUNE PORTION but do Problem 3 as

homework. CADE Lab working on VTUNE installation.
You can turn it in later for EXTRA CREDIT!

• Mailing list set up: cs4961@list.eng.utah.edu

11/03/2009 CS4961 2

A Few Words About Final Project
• Purpose:

- A chance to dig in deeper into a parallel programming model
and explore concepts.

-  Present results to work on communication of technical ideas

• Write a non-trivial parallel program that combines
two parallel programming languages/models. In some
cases, just do two separate implementations.

- OpenMP + SSE-3
- TBB + SSE-3
- MPI + OpenMP
- MPI + SSE-3
- MPI + CUDA
- Open CL??? (keep it simple! need backup plan)

• Present results in a poster session on the last day of
class

11/03/2009 CS4961 3

Example Projects
• Look in the textbook or on-line

-  Recall Red/Blue from Ch. 4
-  Implement in MPI (+ SSE-3)
-  Implement main computation in CUDA

- Algorithms from Ch. 5
- SOR from Ch. 7

-  CUDA implementation?
-  FFT from Ch. 10
- Jacobi from Ch. 10
- Graph algorithms
-  Image and signal processing algorithms
- Other domains…

11/03/2009 CS4961 4

11/3/09

2

Next Thursday, November 12
• Turn in <1 page project proposal

- Algorithm to be implemented
-  Programming model(s)
- Validation and measurement plan

11/03/2009 CS4961 5

Today’s Lecture
• More Message Passing, largely for distributed

memory
• Message Passing Interface (MPI): a Local View

language
• Sources for this lecture

• Larry Snyder,
http://www.cs.washington.edu/education/courses/
524/08wi/

• Online MPI tutorial
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/
talk.html

• Vivek Sarkar, Rice University, COMP 422, F08
http://www.cs.rice.edu/~vs3/comp422/
lecture-notes/index.html

11/03/2009 CS4961 6

MPI Critique from Last Time (Snyder)
• Message passing is a very simple model
• Extremely low level; heavy weight

-  Expense comes from λ and lots of local code
-  Communication code is often more than half
- Tough to make adaptable and flexible
- Tough to get right and know it
- Tough to make perform in some (Snyder says most) cases

• Programming model of choice for scalability
• Widespread adoption due to portability, although not

completely true in practice

11/03/2009 CS4961 7

Today’s MPI Focus
• Blocking communication

- Overhead
- Deadlock?

• Non-blocking
• One-sided communication

11/03/2009 CS4961 8

11/3/09

3

MPI-1
• MPI is a message-passing library interface standard.

- Specification, not implementation
-  Library, not a language
-  Classical message-passing programming model

• MPI was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.

-  2-year intensive process

• Implementations appeared quickly and now MPI is
taken for granted as vendor-supported software on
any parallel machine.

• Free, portable implementations exist for clusters and
other environments (MPICH2, Open MPI)

11/03/2009 CS4961 9

MPI-2
• Same process of definition by MPI Forum
• MPI-2 is an extension of MPI – Extends the message-

passing model.
• Parallel I/O
• Remote memory operations (one-sided)
• Dynamic process management

- Adds other functionality
-  C++ and Fortran 90 bindings
-  similar to original C and Fortran-77 bindings
-  External interfaces
-  Language interoperability
- MPI interaction with threads

11/03/2009 CS4961 10

Non-Buffered vs. Buffered Sends
• A simple method for forcing send/receive semantics

is for the send operation to return only when it is
safe to do so.

•  In the non-buffered blocking send, the operation
does not return until the matching receive has been
encountered at the receiving process.

• Idling and deadlocks are major issues with non-
buffered blocking sends.

• In buffered blocking sends, the sender simply copies
the data into the designated buffer and returns
after the copy operation has been completed. The
data is copied at a buffer at the receiving end as
well.

• Buffering alleviates idling at the expense of copying
overheads.

11/03/2009 CS4961 11

Non-Blocking Communication
• The programmer must ensure semantics of the send

and receive.
• This class of non-blocking protocols returns from the

send or receive operation before it is semantically
safe to do so.

• Non-blocking operations are generally accompanied by
a check-status operation.

• When used correctly, these primitives are capable of
overlapping communication overheads with useful
computations.

• Message passing libraries typically provide both
blocking and non-blocking primitives.

11/03/2009 CS4961 12

11/3/09

4

Deadlock?
int a[10], b[10], myrank;
MPI_Status status; ...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD); }

else if (myrank == 1) {
 MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
 MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);
}
...

11/03/2009 CS4961 13

Deadlock?
Consider the following piece of code, in which process i

sends a message to process i + 1 (modulo the number
of processes) and receives a message from process i -
1 (module the number of processes).

int a[10], b[10], npes, myrank;
MPI_Status status; ...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

MPI_COMM_WORLD); ...

11/03/2009 CS4961 14

Non-Blocking Communication
• To overlap communication with computation, MPI

provides a pair of functions for performing non-
blocking send and receive operations (“I” stands for
“Immediate”):
 int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)
 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

 These operations return before the operations have been
completed.

•  Function MPI_Test tests whether or not the non- blocking send
or receive operation identified by its request has finished.
 int MPI_Test(MPI_Request *request, int *flag, MPI_Status
*status)

•  MPI_Wait waits for the operation to complete.
 int MPI_Wait(MPI_Request *request, MPI_Status *status)

11/03/2009 CS4961 15

One-Sided Communication

11/03/2009 CS4961 16

11/3/09

5

MPI One-Sided Communication or Remote
Memory Access (RMA)

• Goals of MPI-2 RMA Design
-  Balancing efficiency and portability across a wide class of

architectures
-  shared-memory multiprocessors
- NUMA architectures
-  distributed-memory MPP’s, clusters
- Workstation networks

• Retaining “look and feel” of MPI-1
• Dealing with subtle memory behavior issues: cache

coherence, sequential consistency

11/03/2009 CS4961 17

MPI Constructs supporting One-Sided
Communication (RMA)

• MPI_Win_create exposes local memory to RMA
operation by other processes in a communicator

-  Collective operation
-  Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote
memory

• MPI_Get retrieves data from remote memory into
local memory

• MPI_Accumulate updates remote memory using
local values

03/2009 CS4961 18

