
11/3/09

1

10/29/2009 CS4961

CS4961 Parallel Programming 

Lecture 16:  
Introduction to Message Passing  

Mary Hall 
October 29, 2009  

1

Administrative
• Homework assignment 3 will be posted today (after

class)
• Due, Thursday, November 5 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw3 <gzipped tar file>”
NEW: VTUNE PORTION IS EXTRA CREDIT!
• Mailing list set up: cs4961@list.eng.utah.edu
• Next week we’ll start discussing final project

- Optional CUDA or MPI programming assignment part of this

10/27/2009 CS4961 2

A Few Words About Final Project
• Purpose:

- A chance to dig in deeper into a parallel programming model
and explore concepts.

-  Present results to work on communication of technical ideas

• Write a non-trivial parallel program that combines
two parallel programming languages/models. In some
cases, just do two separate implementations.

- OpenMP + SSE-3
- OpenMP + CUDA (but need to do this in separate parts of

the code)
- TBB + SSE-3
- MPI + OpenMP
- MPI + SSE-3
- MPI + CUDA

• Present results in a poster session on the last day of
class

10/29/2009 CS4961 3

Example Projects
• Look in the textbook or on-line

-  Recall Red/Blue from Ch. 4
-  Implement in MPI (+ SSE-3)
-  Implement main computation in CUDA

- Algorithms from Ch. 5
- SOR from Ch. 7

-  CUDA implementation?
-  FFT from Ch. 10
- Jacobi from Ch. 10
- Graph algorithms
-  Image and signal processing algorithms
- Other domains…

10/29/2009 CS4961 4

11/3/09

2

Today’s Lecture
• Message Passing, largely for distributed memory
• Message Passing Interface (MPI): a Local View

language
• Sources for this lecture

• Larry Snyder,
http://www.cs.washington.edu/education/courses/
524/08wi/

• Online MPI tutorial
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/
talk.html

10/29/2009 CS4961 5

Message Passing
• Message passing is the principle alternative to shared

memory parallel programming
-  Based on Single Program, Multiple Data (SPMD)
- Model with send() and recv() primitives
- Message passing is universal, but low-level
- More even than threading, message passing is locally

focused -- what does each processor do?
-  Isolation of separate address spaces

+ no data races
+ forces programmer to think about locality, so good for

performance
+ architecture model exposed, so good for performance
-  low level
-  complexity
-  code growth!

10/29/2009 CS4961 6

Message Passing Libraries (1)
• Many “message passing libraries” were once available

-  Chameleon, from ANL.
-  CMMD, from Thinking Machines.
-  Express, commercial.
- MPL, native library on IBM SP-2.
- NX, native library on Intel Paragon.
- Zipcode, from LLL.
-  PVM, Parallel Virtual Machine, public, from ORNL/UTK.
- Others...
- MPI, Message Passing Interface, now the industry standard.

• Need standards to write portable code.

Message Passing Libraries (2)
• All communication, synchronization require subroutine calls

- No shared variables
-  Program run on a single processor just like any uniprocessor

program, except for calls to message passing library

• Subroutines for
-  Communication

-  Pairwise or point-to-point: Send and Receive
-  Collectives all processor get together to

–  Move data: Broadcast, Scatter/gather
–  Compute and move: sum, product, max, … of data on many

processors

- Synchronization
- Barrier
- No locks because there are no shared variables to protect

- Queries
- How many processes? Which one am I? Any messages waiting?

11/3/09

3

Novel Features of MPI

• Communicators encapsulate communication spaces for
library safety

• Datatypes reduce copying costs and permit
heterogeneity

• Multiple communication modes allow precise buffer
management

• Extensive collective operations for scalable global
communication

• Process topologies permit efficient process
placement, user views of process layout

• Profiling interface encourages portable tools

Slide source: Bill Gropp, ANL

MPI References
• The Standard itself:

- at http://www.mpi-forum.org
- All MPI official releases, in both postscript and

HTML

• Other information on Web:
- at http://www.mcs.anl.gov/mpi
- pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL

Books on MPI

•  Using MPI: Portable Parallel Programming
with the Message-Passing Interface (2nd edition),
by Gropp, Lusk, and Skjellum, MIT Press,
1999.

•  Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

•  MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

•  MPI: The Complete Reference - Vol 2 The MPI
Extensions, by Gropp, Huss-Lederman, Lumsdaine, Lusk,
Nitzberg, Saphir, and Snir, MIT Press, 1998.

•  Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

•  Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

Slide source: Bill Gropp, ANL

Working through an example
• We’ll write some message-passing pseudo code for

Count3 (from Lecture 4)

10/29/2009 CS4961 12

11/3/09

4

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

- How many processes are participating in
this computation?

- Which one am I?

• MPI provides functions to answer these
questions:
- MPI_Comm_size reports the number of processes.
- MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

Slide source: Bill Gropp

Hello (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp

Hello (Fortran)

program main

include 'mpif.h'

integer ierr, rank, size

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

print *, 'I am ', rank, ' of ', size

call MPI_FINALIZE(ierr)

end
Slide source: Bill Gropp,

Hello (C++)

#include "mpi.h"

#include <iostream>

int main(int argc, char *argv[])

{

 int rank, size;

 MPI::Init(argc, argv);

 rank = MPI::COMM_WORLD.Get_rank();

 size = MPI::COMM_WORLD.Get_size();

 std::cout << "I am " << rank << " of " << size <<
 "\n";

 MPI::Finalize();

 return 0;

}
Slide source: Bill Gropp,

11/3/09

5

Notes on Hello World

• All MPI programs begin with MPI_Init and end with
MPI_Finalize

• MPI_COMM_WORLD is defined by mpi.h (in C) or mpif.h
(in Fortran) and designates all processes in the MPI “job”

• Each statement executes independently in each process
-  including the printf/print statements

• I/O not part of MPI-1 but is in MPI-2
-  print and write to standard output or error not part of either

MPI-1 or MPI-2
-  output order is undefined (may be interleaved by character, line,

or blocks of characters),

• The MPI-1 Standard does not specify how to run an MPI
program, but many implementations provide
mpirun –np 4 a.out

Slide source: Bill Gropp

MPI Basic Send/Receive
• We need to fill in the details in

• Things that need specifying:
- How will “data” be described?
- How will processes be identified?
- How will the receiver recognize/screen messages?
- What will it mean for these operations to

complete?

Process 0 Process 1

Send(data)

Receive(data)

Slide source: Bill Gropp, ANL

Some Basic Concepts
• Processes can be collected into groups
• Each message is sent in a context, and must
be received in the same context

- Provides necessary support for libraries

• A group and context together form a
communicator

• A process is identified by its rank in the
group associated with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

Slide source: Bill Gropp,

MPI Datatypes
• The data in a message to send or receive is
described by a triple (address, count,
datatype), where

• An MPI datatype is recursively defined as:
- predefined, corresponding to a data type from

the language (e.g., MPI_INT, MPI_DOUBLE)
- a contiguous array of MPI datatypes
- a strided block of datatypes
- an indexed array of blocks of datatypes
- an arbitrary structure of datatypes

• There are MPI functions to construct custom
datatypes, in particular ones for subarrays

Slide source: Bill Gropp

11/3/09

6

MPI Tags
• Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message

• Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY_TAG as
the tag in a receive

• Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

Slide source: Bill Gropp

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag, comm)
• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the
rank of the target process in the communicator specified
by comm.

• When this function returns, the data has been delivered
to the system and the buffer can be reused. The
message may not have been received by the target
process.

Slide source: Bill Gropp

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)
• Waits until a matching (both source and tag) message is

received from the system, and the buffer can be used
• source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

• tag is a tag to be matched on or MPI_ANY_TAG
• receiving fewer than count occurrences of datatype is OK,

but receiving more is an error
• status contains further information (e.g. size of message)

Slide source: Bill Gropp, ANL

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL

11/3/09

7

7-25

Figure 7.1 An MPI solution to the Count
3s problem.

7-26

Figure 7.1 An MPI solution to the Count
3s problem. (cont.)

7-27

Code Spec 7.8 MPI_Scatter().

7-28

Code Spec 7.8 MPI_Scatter(). (cont.)

11/3/09

8

7-29

Figure 7.2
Replacement code (for lines 16–48 of Figure 7.1)
to distribute data using a scatter operation.

Other Basic Features of MPI
• MPI_Gather

•  Analogous to MPI_Scatter

• Scans and reductions
• Groups, communicators, tags

- Mechanisms for identifying which processes participate in a
communication

• MPI_Bcast
-  Broadcast to all other processes in a “group”

10/29/2009 CS4961 30

7-31

Figure 7.4 Example of collective
communication within a group.

7-32

Figure 7.5 A 2D relaxation replaces—on
each iteration—all interior values by the
average of their four nearest neighbors.

11/3/09

9

7-33

Figure 7.6 MPI code for the main loop of
the 2D SOR computation.

7-34

Figure 7.6 MPI code for the main loop of
the 2D SOR computation. (cont.)

7-35

Figure 7.6 MPI code for the main loop of
the 2D SOR computation. (cont.)

MPI Critique (Snyder)
• Message passing is a very simple model
• Extremely low level; heavy weight

-  Expense comes from λ and lots of local code
-  Communication code is often more than half
- Tough to make adaptable and flexible
- Tough to get right and know it
- Tough to make perform in some (Snyder says most) cases

• Programming model of choice for scalability
• Widespread adoption due to portability, although not

completely true in practice

10/29/2009 CS4961 36

