
10/27/09

1

10/27/2009
 CS4961

CS4961 Parallel Programming 

Lecture 15:  
Locality/VTUNE Homework 

Mary Hall 
October 27, 2009  

1

Administrative
• Homework assignment 3 will be posted today (after

class)
• Due, Thursday, November 5 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw3 <gzipped tar file>”
• Mailing list set up: cs4961@list.eng.utah.edu
• Next week we’ll start discussing final project

- Optional CUDA or MPI programming assignment part of this

10/27/2009
 CS4961
 2

Midterm Exam

10/27/2009
 CS4961
 3

Score Range Number of
Students

Grade

97-100 1 A+
88-93 6 A
85-87 4 A-
80-83 7 B+
75-79 7 B
72-73 2 B-
59-61 2 C

Comments on Exam
• Overall, most students did well with the concepts
• Some problem-solving gaps
• Quick discussion of questions

10/27/2009
 CS4961
 4

10/27/09

2

Exam discussion
Problem 2:

a. A multiprocessor consists of 100 processors, each
capable of a peak execution rate of 2 Gflops (i.e., 2
billion floating point operations per second). What is
the peak performance of the system as measured in
Gflops for an application where 10% of the code is
sequential and 90% is parallelizable?

10/27/2009
 CS4961
 5

Key point: Speedup roughly 10, so roughly 20 GFlops

Exam discussion
b. Given the following code, which is representative of

a Fast Fourier Transform:

procedure FFT_like_pattern(A,n) {
float *A;
int n, m;

m = log2n;
for (j=0; j<m; j++) {
 k = 2j;
 for (i=0; i<k; i++)
 A[i] = A[i] + A[i XOR 2j];
}
}

(1) What are the data dependences on loops i and j?
(2) Assume n = 16. Provide OpenMP or Peril-L code
for the mapping to a shared-memory parallel
architecture.

10/27/2009
 CS4961
 6

Key points: main
dependence on j loop,
parallelize I loop

Exam discussion
(c) Construct a task-parallel (similar to producer-consumer) pipelined

code to identify the set of prime numbers in the sequence of integers
from 1 to n. A common sequential solution to this problem is the sieve
of Erasthones. In this method, a series of all integers is generated
starting from 2. The first number, 2, is prime and kept. All multiples
of 2 are deleted because they cannot be prime. This process is
repeated with each remaining number, up until but not beyond sqrt(n).
A possible sequential implementation of this solution is as follows:

for (i=2; i<=n; i++) {
 prime[i] = true;
for (i=2; i<= sqrt(n); i++) {
 if (prime[i]) {
 for (j=i+i; j<=n; j = j+i) { // multiples of i are set to non-prime
 prime[j] = false;
 }
}

10/27/2009
 CS4961
 7

Key points: Task parallelism, buffer for queuing data so
no data dependences, modify indexiing

Homework 3
Problem 1. Assume a cache line size of 4 elements.

Identify the different kinds of reuse and how many
memory accesses there are in the following example,
assuming (a) row-major order, (b) column-major
order. Use the inner loop memory cost calculation
from slides 11-13 of Lecture 15 to estimate memory
accesses.

 for (i = 0; i<n; i++)
 for (j = 0; j<m; j++)
 A[i][j] = B[i][j] + B[j][i] + C[i]

10/27/2009
 CS4961
 8

10/27/09

3

Homework 3, cont.
Problem 2. What code would be generated to tile the

following loop nest for reuse in cache, assuming row-
major order and two levels of tiling (Note: the loop
order may need to be modified). Prove that tiling is
safe.

 for (i = 0; i<n; i++)
 for (j = 0; j<m; j++)
 for (k=0; k<l;k++)
 A[i][k] = A[i][k] + B[k][j]*C[k][k]

10/27/2009
 CS4961
 9

Homework 3
Problem 3: VTUNE:
Consider the jacobi code in jacobi.c on the website.

Here is the main computation:
// play around with this loop nest
 for (i=1; i<width-1; i++)
 for (j=1; j<height-1; j++)
 A[i][j] = (B[i+1][j] + B[i-1][j] + B[i][j+1] + B[i][j-1])/4;

(a) Run this code under VTUNE. Indicate event-based
sampling, and collect the following events.
(CPU_CLK_UNHALTED,
MEM_LOAD_RETIRED.L1D_MISS,
MEM_LOAD_RETIRED.L2_MISS)

(b) Now attempt to tile the innermost loop and repeat.
Do you see an impact on cache misses and cycles.

(c) Extra credit: Tile the other loop. Now what
happens.

10/27/2009
 CS4961
 10

11

Reuse Analysis:
Use to Estimate Cache Misses

for (i=0; i<N; i++)
for (j=0; j<M; j++)
 A[i]=A[i]+B[j][i]

for (j=0; j<M; j++)
 for (i=0; i<N; i++)
 A[i]=A[i]+B[j][i]

(*) cls = Cache Line Size (in elements)

10/01/2009
 CS4961

Remember: Row-major storage for C arrays

10/01/2009
 CS4961
 12

Allen & Kennedy: Innermost memory cost
• Innermost memory cost: CM(Li)

- assume Li is innermost loop
-  li = loop variable, N = number of iterations of Li

- for each array reference r in loop nest:
- r does not depend on li : cost (r) = 1
- r such that li strides over a non-contiguous dimension:

cost (r) = N
- r such that li strides over a contiguous dimension: cost

(r) = N/cls
- At outer loops,

- multiply cost(r) by trip count if reference varies
with loop index

- Otherwise, multiply cost(r) by 1 unless pushed out
of cache

- CM(Li) = sum of cost (r)

Implicit in
this cost

function is
that N is

sufficiently
large that

cache
capacity is

exceeded by
data

footprint in
innermost

loop

10/27/09

4

13

Canonical Example: Selecting Loop Order

• CM(i) = 2N3 + N2 [C: N3, A: N3, B: N2)
• CM(j) = 2N3/cls + N2 [C: N3/cls, A: N2, B:
N3/cls]

• CM(k) = N2 + N3/cls + N3 [C: N2, A: N3/
cls, B: N3]

• Ordering by innermost loop cost: j,k,i

for (i=0; i<N; i++)
for (j=0; j<N; j++)
 C[i][j] = 0;
 for (k=0; k<N; k++)

 C[i][j]= C[i][j] + A[i][k] * B[k][j];

10/01/2009
 CS4961
 14

Canonical Example: Selecting Tile Size

DO K = 1, N by TK
 DO I = 1, N by TI
 DO J = 1, N
 DO KK = K, min(KK+ TK,N)
 DO II = I, min(II+ TI,N)
 C(II,J)= C(II,J)+A(II,KK)*B(KK,J)

C A B

BI

BK

Choose Ti and Tk such that data footprint does not exceed cache capacity

10/01/2009
 CS4961

