
10/27/09

1

10/01/2009 CS4961

CS4961 Parallel Programming 

Lecture 12/13:  
Introduction to Locality 

Mary Hall 
October 1/3, 2009  

1

Administrative
• Programming assignment 2 is posted (after class)
• Due, Thursday, October 8 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 prog2 <gzipped tar file>”
• Mailing list set up: cs4961@list.eng.utah.edu

• Midterm Quiz on Oct. 8
-  Covers material in Lectures 1-11
-  Brief review on Tuesday
-  Can take it early on Tuesday, Oct. 6 after class

10/01/2009 CS4961 2

Today’s Lecture
• Questions on assignment
• Review for exam
• More on data locality (and slides from last time)

-  Begin with dependences
- Tests for legality of transformations
- A few more transformations

10/01/2009 CS4961 3

Review for Quiz
•  L1: Overview

- Technology drivers for multi-core paradigm shift
-  Concerns in efficient parallelization

•  L2:
-  Fundamental theorem of dependence (also in today’s

lecture)
-  Reductions

•  L3
- SIMD/MIMD, shared memory, distributed memory
-  Candidate Type Architecture Model

•  L4
- Task and data parallelism,
-  Example in Peril-L

•  L5
- Task Parallelism and Task Graphs

10/01/2009 CS4961 4

10/27/09

2

Review for Quiz
• L6

- SIMD execution
-  Challenges with SIMD multimedia extensions

• L7
- Solution to HW2
- Ghost cells and data partitioning

• L8 & L9
- OpenMP: constructs, idea, target architecture

• L10
- TBB (see tutorial and assignment)

• L11
-  Reasoning about Performance

10/01/2009 CS4961 5

Format for Quiz
• Definitions, 1 from each lecture
• Problem solving (3 questions)
• Essay question (pick one from 5)

10/01/2009 CS4961 6

Locality – What does it mean?
• We talk about locality a lot
• What are the ways to improve memory behavior in a

parallel application?
• What are the key considerations?
• Today’s lecture

- Mostly about managing caches (and registers)
- Targets of optimizations
- Abstractions to reason about locality
- Data dependences, reordering transformations

10/01/2009 CS4961 7 10/01/2009 CS4961

Locality and Parallelism (from Lecture 1)

•  Large memories are slow, fast memories are small
•  Cache hierarchies are intended to provide illusion of large, fast

memory
•  Program should do most work on local data!

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

8

10/27/09

3

Lecture 3: Candidate Type Architecture
(CTA Model)

• A model with P
standard
processors, d
degree,λ
latency

• Node ==
processor +
memory + NIC

• Key Property:
Local memory
ref is 1, global
memory is λ

09/01/2009 CS4961 9

Targets of Memory Hierarchy Optimizations

• Reduce memory latency
-  The latency of a memory access is the time (usually in cycles)

between a memory request and its completion

• Maximize memory bandwidth
-  Bandwidth is the amount of useful data that can be retrieved

over a time interval

• Manage overhead
-  Cost of performing optimization (e.g., copying) should be less

than anticipated gain

10/01/2009 CS4961 10

Reuse and Locality
• Consider how data is accessed

- Data reuse:
- Same or nearby data used multiple times
- Intrinsic in computation

- Data locality:
- Data is reused and is present in “fast memory”
- Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
-  Appropriate data placement and layout
-  Code reordering transformations

10/01/2009 CS4961 11 12

Cache basics: a quiz

• Cache hit:
- in-cache memory access—cheap

• Cache miss:
- non-cached memory access—expensive
- need to access next, slower level of hierarchy

• Cache line size:
- # of bytes loaded together in one entry
- typically a few machine words per entry

• Capacity:
- amount of data that can be simultaneously in cache

• Associativity
- direct-mapped: only 1 address (line) in a given range in cache
- n-way: n ≥ 2 lines w/ different addresses can be stored

Pa
ra

m
et

er
s

to
 o

pt
im

iz
at

io
n

10/01/2009 CS4961

10/27/09

4

Temporal Reuse in Sequential Code

• Same data used in distinct iterations I and I’

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j+1]+A[j-1]

• A[j] has self-temporal reuse in loop i

10/01/2009 13CS4961

Spatial Reuse (Ignore for now)

• Same data transfer (usually cache line) used in
distinct iterations I and I’

·  A[j] has self-spatial reuse in loop j
•  Multi-dimensional array note: C arrays are

stored in row-major order

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j+1]+A[j-1];

10/01/2009 14CS4961

Group Reuse

• Same data used by distinct references

•  A[j],A[j+1] and A[j-1] have group reuse (spatial
and temporal) in loop j

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j+1]+A[j-1];

10/01/2009 15CS4961 16

Can Use Reordering Transformations!
• Analyze reuse in computation

• Apply loop reordering transformations to improve
locality based on reuse

• With any loop reordering transformation, always ask
- Safety? (doesn’t reverse dependences)
-  Profitablity? (improves locality)

10/01/2009 CS4961

10/27/09

5

Loop Permutation:
An Example of a Reordering Transformation

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order! i

j

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?
10/01/2009 CS4961 17

Permutation has many goals
• Locality optimization

•  Particularly, for spatial locality (like in your SIMD assignment)

• Rearrange loop nest to move parallelism to
appropriate level of granularity

-  Inward to exploit fine-grain parallelism (like in your SIMD
assignment)

- Outward to exploit coarse-grain parallelismx

• Also, to enable other optimizations

10/01/2009 CS4961 18

19

Tiling (Blocking):
Another Loop Reordering Transformation

• Blocking reorders loop iterations to bring iterations
that reuse data closer in time

• Goal is to retain in cache between reuse

J

I

J

I

10/01/2009 CS4961

Tiling is Fundamental!
• Tiling is very commonly used to manage limited

storage
-  Registers
-  Caches
- Software-managed buffers
- Small main memory

• Can be applied hierarchically

10/01/2009 CS4961 20

10/27/09

6

21

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] +B[j,i]

for (j=1; j<M; j++)
for (i=1; i<N; i+=s)
 for (ii=i; ii<min(i+s-1,N); ii++)
 D[ii] = D[ii] +B[j,ii]

Strip
mine

for (i=1; i<N; i+=s)
 for (j=1; j<M; j++)

 for (ii=i; ii<min(i+s-1,N); ii++)
 D[ii] = D[ii] +B[j,ii]

Permute

10/01/2009 CS4961

How to Determine Safety and Profitability?
• Safety

- A step back to Lecture 2
- Notion of reordering transformations
-  Based on data dependences

• Profitability
-  Reuse analysis (and other cost models)
- Also based on data dependences, but simpler

10/01/2009 CS4961 22

Key Control Concept: Data Dependence
• Question: When is parallelization guaranteed to be

safe?
• Answer: If there are no data dependences across

reordered computations.
• Definition: Two memory accesses are involved in a

data dependence if they may refer to the same
memory location and one of the accesses is a write.

• Bernstein’s conditions (1966): Ij is the set of
memory locations read by process Pj, and Oj the set
updated by process Pj. To execute Pj and another
process Pk in parallel,

 Ij ∩ Ok = ϕ write after read
 Ik ∩ Oj = ϕ read after write
 Oj ∩ Ok = ϕ write after write

10/01/2009 CS4961 23

Data Dependence and Related Definitions

•  Actually, parallelizing compilers must formalize this to guarantee
correct code.

•  Let’s look at how they do it. It will help us understand how to reason
about correctness as programmers.

•  Definition:
Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same program
statement.

•  Source:
•  “Optimizing Compilers for Modern Architectures: A Dependence-Based

Approach”, Allen and Kennedy, 2002, Ch. 2. (not required or essential)

10/01/2009 24CS4961

10/27/09

7

Some Definitions (from Allen & Kennedy)

• Definition 2.5:
- Two computations are equivalent if, on the same inputs,

- they produce identical outputs
- the outputs are executed in the same order

• Definition 2.6:
- A reordering transformation

- changes the order of statement execution
- without adding or deleting any statement executions.

• Definition 2.7:
- A reordering transformation preserves a dependence if

-  it preserves the relative execution order of the dependences’
source and sink.

10/01/200925 CS4961

Fundamental Theorem of Dependence

• Theorem 2.2:
- Any reordering transformation that preserves

every dependence in a program preserves the
meaning of that program.

10/01/2009 CS496126

27

Forall or Doall loops:
Loops whose iterations can execute in parallel (a particular
reordering transformation)

Example
 forall (i=1; i<=n; i++)
 A[i] = B[i] + C[i];

Meaning?

Brief Detour on Parallelizable Loops as a
Reordering Transformation

Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept?

Source of scalable, balanced work
Common to scientific, multimedia, graphics & other domains

10/01/2009 CS4961

Data Dependence for Arrays

• Recognizing parallel loops (intuitively)
-  Find data dependences in loop
- No dependences crossing iteration boundary

parallelization of loop’s iterations is safe

for (i=2; i<5; i++)
 A[i] = A[i-2]+1;

for (i=1; i<=3; i++)
 A[i] = A[i]+1;

Loop-
Carried
dependence

Loop-
Independent
dependence

10/01/200928 CS4961

10/27/09

8

1. Characterize Iteration Space

•  Iteration instance: represented as coordinates in iteration space
-  n-dimensional discrete cartesian space for n deep loop nests

•  Lexicographic order: Sequential execution order of iterations
[1,1], [1,2], ..., [1,6],[1,7],
[2,2], [2,3], ..., [2,6], ...

•  Iteration I (a vector) is lexicographically less than I’, I<I’ , iff
 there exists c (i1, …, ic-1) = (i’1, …, i’c-1) and ic < i’c .

j

for (i=1;i<=5; i++)
 for (j=i;j<=7; j++)

 ...
1 ≤ i ≤ 5
i ≤ j ≤ 7

i

10/01/200929 CS4961

2. Compare Memory Accesses across
Dynamic Instances in Iteration Space

N = 6;
for (i=1; i<N; i++)
 for (j=1; j<N; j++)
 A[i+1,j+1] = A[i,j] * 2.0;

i

j
How to describe relationship between two dynamic instances?

 e.g., I=[1,1] and I’=[2,2]

I=[1,1],
Write A[2,2]

I’=[2,2],
Read A[2,2]

10/01/200930 CS4961

Distance Vectors

• Distance vector = [1,1]
• A loop has a distance vector D if there exists data

dependence from iteration vector I to a later
vector I’, and D = I’ - I.

• Since I’ > I, D >= 0.
(D is lexicographically greater than or equal to 0).

N = 6;
for (i=1; i<N; i++)
 for (j=1; j<N; j++)
 A[i+1,j+1] = A[i,j] * 2.0;

10/01/200931 CS4961
32

Distance and Direction Vectors

• Distance vectors: (infinitely large set)

• Direction vectors: (realizable if 0 or
lexicographically positive)
 ([=,=],[=,<],[<,>], [<,=], [<.<])

• Common notation:
 0 =

+ <
 - >
 +/- *

10/01/2009 CS4961

10/27/09

9

33

Parallelization Test: 1-Dimensional Loop

• Examples:

 for (j=1; j<N; j++) for (j=1; j<N; j++)
 A[j] = A[j] + 1; B[j] = B[j-1] + 1;

• Dependence (Distance and Direction) Vectors?

• Test for parallelization:

- A 1-d loop is parallelizable if for all data dependences
D ε D, D = 0

10/01/2009 CS4961 34

n-Dimensional Loop Nests

for (i=1; i<=N; i++)

 for (j=1; j<=N; j++)

 A[i,j] = A[i,j-1]+1;

for (i=1; i<=N; i++)

 for (j=1; j<=N; j++)

 A[i,j] = A[i-1,j-1]+1;

• Distance and direction vectors?
• Definition:

D = (d1, … dn) is loop-carried at level i if di is the first
nonzero element.

10/01/2009 CS4961

35

Test for Parallelization
The i th loop of an n-dimensional loop is parallelizable if

there does not exist any level i data dependences.

The i th loop is parallelizable if for all dependences
D = (d1, … dn),

either
 (d1, … di-1) > 0
or
 (d1, … di) = 0

10/01/2009 CS4961 36

Back to Locality: Safety of Permutation

• Intuition: Cannot permute two loops i and j in a loop
nest if doing so reverses the direction of any
dependence.

• Loops i through j of an n-deep loop nest are fully
permutable if for all dependences D,

 either
 (d1, … di-1) > 0
 or

 forall k, i ≤ k ≤ j, dk ≥ 0
• Stated without proof: Within the affine domain, n-1

inner loops of n-deep loop nest can be transformed to
be fully permutable.

10/01/2009 CS4961

10/27/09

10

37

Simple Examples: 2-d Loop Nests

• Distance vectors

• Ok to permute?

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

 A[i][j+1]=A[i][j]+B[j]

for (i= 0; i<3; i++)
for (j=0; j<6; j++)
 A[i+1][j-1]=A[i][j]
 +B[j]

10/01/2009 CS4961 38

Legality of Tiling

• Tiling = strip-mine and permutation
- Strip-mine does not reorder iterations
- Permutation must be legal
OR
-  strip size less than dependence
distance

10/01/2009 CS4961

10/01/2009 CS4961 39

Summary of Lecture

• Motivation for Locality Optimization
• Discussion of dependences and reuse
analysis

• Brief examination of loop transformations
- Specifically, permutation and tiling
- More next lecture

