
9/29/09

1

09/29/2010
 CS4961

CS4961 Parallel Programming 

Lecture 11:  
Thread Building Blocks, cont. 

and Reasoning about
Performance 

Mary Hall 
September 29, 2009  

1

Administrative
• Programming assignment 2 is posted (after class)
• Due, Thursday, October 8 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 prog2 <gzipped tar file>”
• Mailing list set up: cs4961@list.eng.utah.edu

• Midterm Quiz on Oct. 8?
• Remote access to window machines?

-  term.coe.utah.edu does not support VS 

09/29/2010
 CS4961
 2

Today’s Lecture
• Project 2
• Thread Building Blocks, cont.
• Ch. 3, Reasoning About Performance
• Sources for Lecture:

-  http://www.threadingbuildingblocks.org/
- Tutorial:
 http://software.intel.com/sites/products/documentation/

hpc/tbb/tutorial.pdf
-  Intel Academic Partners program (see other slides)

09/29/2010
 CS4961
 3

Project 2
• Part I Open MP
 Problem 1 (Data Parallelism): The code from the last assignment
models a sparse matrix vector multiply (updated in sparse_matvec.c).
The matrix is sparse in that many of its elements are zero. Rather than
representing all of these zeros which wastes storage, the code uses a
representation called Compressed Row Storage (CRS), which only
represents the nonzeros with auxiliary data structures to keep track of
their location in the full array.
 Given sparse_matvec.c, develop an OpenMP implementation of this code
for 4 threads. You will also need to modify the initialization code as
described below, and add timer functions. You will need to evaluate the
three different scheduling mechanisms, static, dynamic and guided, and
for two different chunk sizes of your choosing.
 I have provided three input matrices, sm1.txt, sm2.txt2 and sm3.txt3,
which were generated from the MatrixMarket (see
http://math.nist.gov/MatrixMarket/). The format for these is a sorted
coordinate representation (row, col, value) and will need to be converted
to CRS. Measure the execution time for the sequential code and all
three parallel versions, all three data set sizes and both chunk sizes.
You will turn in the code, and a brief README file with the 21 different
timings and an explanation of which strategies performed best and why.

09/29/2010
 CS4961
 4

9/29/09

2

Part I, Problem 1
Read first non-comment line of input:
 numrows, numcols, numelts

Allocate memory for a, t, x, rowstr, colind
Initialize a, rowstr and colind
for (j=0; j<n; j++) {
 for (k = rowstr[j]; k<rowstr[j+1]-1; k++)
 t[k] = t[k] + a[k] * x[colind[k]];
 }

09/29/2010
 CS4961
 5

sm1.txt
5 5 10
1 1 8.7567915491768E-1
1 2 7.0294465771411E-1
2 3 4.9541022395547E-1
2 5 6.3917764724488E-1
3 1 7.7804386900087E-1
3 4 4.3333577730521E-1
3 5 4.1076157239530E-2
4 4 1.5584897473534E-1
5 2 5.1359919564256E-1
5 3 1.0235676217063E-1

.87 .70 .49 .63 .77 .43 .04 .15 .51 .10

1 2 3 5 1 4 5 4 2 3

0 2 4 7 8
rowstr:

Colind:

a:

Project 2, cont.
• Part I Open MP, cont.
Problem 2 (Task Parallelism): Producer-consumer codes
represent a common form of a task parallelism where one task is
“producing” values that another thread “consumes”. It is often
used with a stream of data to implement pipeline parallelism.
 The program prodcons.c implements a producer/consumer
sequential application where the producer is generating array
elements, and the consumer is summing up their values. You
should use OpenMP parallel sections to implement this producer-
consumer model. You will also need a shared queue between the
producer and consumer tasks to hold partial data, and
synchronization to control access to the queue. Create two
parallel versions: producing/consuming one value at a time, and
producing/consuming 128 values at a time.
 Measure performance of the sequential code and the two
parallel implementations and include these measurements in your
README file.

09/29/2010
 CS4961
 6

Part I, Problem 2
#define N 166144
A = (double *)malloc(N*sizeof(double));
runtime = omp_get_wtime(); // need to replace timer
printf(" In %lf seconds, The sum is %lf \n",runtime,sum);
fill_rand(N, A); // Producer: fill an array of data
sum = Sum_array(N, A); // Consumer: sum the array
runtime = omp_get_wtime(); // need to replace timer
printf(" In %lf seconds, The sum is %lf \n",runtime,sum);

09/29/2010
 CS4961
 7

What is needed for this one? (Hint: keep it simple)

Project 2, cont.
• Part II Thread Building Blocks
As an Academic Alliance member, we have access to Intel

assignments for ThreadBuildingBlocks. We will use the
assignments from Intel, with provided code that needs to be
modified to use TBB constructs. You will turn in just your
solution code.

Problem 3 (Problem 1 in TBB.doc, Using parallel_for)
 Summary: Parallelize “mxm_serial.cpp”

Problem 4 (Problem 3 in TBB.doc, Using recursive tasks)
 Summary: Modify implementation in rec_main.cpp
 All relevant files prepended with rec_ to avoid conflict.
Problem 5 (Problem 4 in TBB.doc, Using the concurrent_hash_map

container)
 Summary: Modify implementation in chm_main.cpp
 All relevant files prepended with chm_ to avoid conflict.

09/29/2010
 CS4961
 8

9/29/09

3

Part II, Problem 1 (see Tutorial, p. 10, sec 3.2)
Mxm_serial.cpp

void mxm(float c[N][N], float a[N][N], float b[N][N]) {
 for(int i = 0; i < N; ++i) {
 for(int j=0; j<N; ++j) {
 float sum = 0;

 for(int k=0; k<N; ++k) {
 sum += a[i][k]*b[k][j];

 }
 c[i][j] = sum;
 }
 }
}

// Rewrite this function to make use of TBB parallel_for to compute
the matrix multiplication
void ParallelMxM(float c[N][N], float a[N][N], float b[N][N]) {

 mxm(c,a,b);
}

09/29/2010
 CS4961
 9

Part II, Problem 3 (see p. 59, sec 11)
// compute sum of data in all nodes of binary tree
void improved () {
 float sum;
 …
 tbb::task& root_task = *new (tbb::task::allocate_root ())
 MyRecursiveTask (tree, &sum);
 tbb::task::spawn_root_and_wait (root_task);
 …
// tbb::task* execute is a pure virtual method of tbb::task
 tbb::task* execute () { //compute x, y: partial sums for left/right sub-tree
 …
 // Task counter == number of children + 1
 int count = 1;
 if(root->left) {
 // EXAMPLE: Allocating memory for new child to process left tree
 ++count; // Increment task counter
 // Allocate memory for the new child task and add it to the list of tasks
 // Note: the new task has the same type as the parent task.
 list.push_back (*new (allocate_child()) MyRecursiveTask (root->left, &x));
 }
 if(root->right)
 // Process the "right" tree
 // Set task counter
 set_ref_count (count);

09/29/2010
 10

Part II, Problem 5 (see Tutorial, p. 36, sec 6.1)
Code too complex …
Key ideas:
 Original used parallel_for and lock
 Improved is a concurrent library, no need for lock

09/29/2010
 CS4961
 11

Project 2, cont. Using OpenMP
• You can do your development on any machines, and use

compilers available to you. However, the final
measurements should be obtained on the quadcore
systems in lab5. Here is how to invoke OpenMP for
gcc and icc.

-  gcc: gcc –fopenmp prodcons.c
-  icc: icc –openmp prodcons.c

09/29/2010
 CS4961
 12

9/29/09

4

Chapter 3: Reasoning about Performance
• Recall introductory lecture:

•  Easy to write a parallel program that is slower than sequential!

• Naïvely, many people think that applying P processors
to a T time computation will result in T/P time
performance

• Generally wrong
-  For a few problems (Monte Carlo) it is possible to apply

more processors directly to the solution
-  For most problems, using P processors requires a paradigm

shift, additional code, “communication” and therefore
overhead

- Also, differences in hardware
- Assume “P processors => T/P time” to be the best case

possible
-  In some cases, can actually do better (why?)

09/29/2010
 CS4961
 13

Sources of Performance Loss
• Overhead not present in sequential computation
• Non-parallelizable computation
• Idle processors, typically due to load imbalance
• Contention for shared resources

09/29/2010
 CS4961
 14

Sources of parallel overhead
• Thread/process management (next few slides)
• Extra computation

- Which part of the computation do I perform?
- Select which part of the data to operate upon
-  Local computation that is later accumulated with a reduction
- …

• Extra storage
- Auxiliary data structures
-  “Ghost cells”

•  “Communication”
-  Explicit message passing of data
- Access to remote shared global data (in shared memory)
-  Cache flushes and coherence protocols (in shared memory)
- Synchronization (book separates synchronization from

communication)
09/29/2010
 CS4961
 15

Processes and Threads (& Filaments…)
• Let’s formalize some things we have discussed before
• Threads …

-  consist of program code, a program counter, call stack, and a
small amount of thread-specific data

-  share access to memory (and the file system) with other
threads

-  communicate through the shared memory

• Processes …
-  Execute in their own private address space
- Do not communicate through shared memory, but need

another mechanism like message passing; shared address
space another possibility

-  Logically subsume threads
-  Key issue: How is the problem divided among the processes,

which includes data and work

09/29/2010
 CS4961
 16

9/29/09

5

Comparison
• Both have code, PC, call stack, local data

- Threads -- One address space
-  Processes -- Separate address spaces
-  Filaments and similar are extremely fine-grain threads

• Weight and Agility
- Threads: lighter weight, faster to setup, tear down, more

dynamic
-  Processes: heavier weight, setup and tear down more time

consuming, communication is slower

09/29/2010
 CS4961
 17

Managing Thread Overhead
• We have casually talked about thread creation being

slow and undesirable
- So try to optimize this overhead
-  Consider static or one-time thread allocation
-  Create a pool of threads and reuse for different parallel

computations
- Works best when number of threads is fixed throughout

computation

09/29/2010
 CS4961
 18

Latency vs. Throughput
• Parallelism can be used either to reduce latency or

increase throughput
-  Latency refers to the amount of time it takes to complete a

given unit of work (speedup).
- Throughput refers to the amount of work that can be

completed per unit time (pipelining computation).

• There is an upper limit on reducing latency
- Speed of light, esp. for bit transmissions
-  In networks, switching time (node latency)
-  (Clock rate) x (issue width), for instructions
- Diminishing returns (overhead) for problem instances
-  Limitations on #processors or size of memory
-  Power/energy constraints

09/29/2010
 CS4961
 19

Throughput Improvements
• Throughput improvements are often easier to achieve

by adding hardware
- More wires improve bits/second
- Use processors to run separate jobs
-  Pipelining is a powerful technique to execute more (serial)

operations in unit time

• Common way to improve throughput
- Multithreading (e.g., Nvidia GPUs and Cray El Dorado)

09/29/2010
 CS4961
 20

9/29/09

6

Latency Hiding from Multithreading
• Reduce wait times by switching to work on different

operation
- Old idea, dating back to Multics
-  In parallel computing it’s called latency hiding

• Idea most often used to lower λ costs
- Have many threads ready to go …
-  Execute a thread until it makes nonlocal ref
- Switch to next thread
- When nonlocal ref is filled, add to ready list

09/29/2010
 CS4961
 21

Performance Loss: Contention
• Contention -- the action of one processor interferes

with another processor’s actions -- is an elusive
quantity

-  Lock contention: One processor’s lock stops other
processors from referencing; they must wait

-  Bus contention: Bus wires are in use by one processor’s
memory reference

- Network contention: Wires are in use by one packet,
blocking other packets

-  Bank contention: Multiple processors try to access
different locations on one memory chip simultaneously

09/29/2010
 CS4961
 22

Performance Loss: Load Imbalance
• Load imbalance, work not evenly assigned to the

processors, underutilizes parallelism
- The assignment of work, not data, is key
- Static assignments, being rigid, are more prone to imbalance
-  Because dynamic assignment carries overhead, the quantum

of work must be large enough to amortize the overhead
- With flexible allocations, load balance can be solved late in

the design programming cycle

09/29/2010
 CS4961
 23

Other considerations we have discussed
• Locality (next few lectures)
• Granularity of Parallelism

09/29/2010
 CS4961
 24

9/29/09

7

Summary:
• Issues in reasoning about performance

09/29/2010
 CS4961
 25

