
8/25/09

1

08/25/2009
 CS4961

CS4961 Parallel Programming 

Lecture 1: Introduction  

Mary Hall 
August 25, 2009  

1

Course Details
• Time and Location: TuTh, 9:10-10:30 AM, WEB L112
• Course Website

-  http://www.eng.utah.edu/~cs4961/

• Instructor: Mary Hall, mhall@cs.utah.edu,
 http://www.cs.utah.edu/~mhall/

- Office Hours: Tu 10:45-11:15 AM; Wed 11:00-11:30 AM

• TA: Sriram Aananthakrishnan, sriram@cs.utah.edu
- Office Hours: TBD

• Textbook
-  “Principles of Parallel Programming,”

 Calvin Lin and Lawrence Snyder.
- Also, readings and notes provided for

 MPI, CUDA, Locality and Parallel Algs.

08/25/2009
 CS4961
 2

Today’s Lecture

• Overview of course (done)
• Important problems require powerful
computers …

- … and powerful computers must be parallel.
- Increasing importance of educating parallel
programmers (you!)

• What sorts of architectures in this class
-  Multimedia extensions, multi-cores, GPUs,

networked clusters

• Developing high-performance parallel
applications

- An optimization perspective
08/25/2009
 3
CS4961
 08/25/2009
 CS4961

Outline
• Logistics

• Introduction

• Technology Drivers for Multi-Core Paradigm Shift

• Origins of Parallel Programming: Large-scale
scientific simulations

• The fastest computer in the world today

• Why writing fast parallel programs is hard
Some material for this lecture drawn from:
 Kathy Yelick and Jim Demmel, UC Berkeley
 Quentin Stout, University of Michigan,
 (see http://www.eecs.umich.edu/~qstout/parallel.html)
 Top 500 list (http://www.top500.org)

4

8/25/09

2

Course Objectives
• Learn how to program parallel processors and
systems

- Learn how to think in parallel and write correct
parallel programs

- Achieve performance and scalability through
understanding of architecture and software mapping

• Significant hands-on programming experience
- Develop real applications on real hardware

• Discuss the current parallel computing context
- What are the drivers that make this course timely
- Contemporary programming models and

architectures, and where is the field going
08/25/2009
 CS4961
 5

Parallel and Distributed Computing
• Parallel computing (processing):

-  the use of two or more processors (computers), usually
within a single system, working simultaneously to solve a
single problem.

• Distributed computing (processing):
-  any computing that involves multiple computers remote
from each other that each have a role in a computation
problem or information processing.

• Parallel programming:
-  the human process of developing programs that express

what computations should be executed in parallel.

08/25/2009
 CS4961
 6

08/25/2009
 CS4961

Why is Parallel Programming Important Now?
• All computers are now parallel computers
(embedded, commodity, supercomputer)

- On-chip architectures look like parallel computers
-  Languages, software development and compilation strategies

originally developed for high end (supercomputers) are now
becoming important for many other domains

• Why?
- Technology trends

• Looking to the future
-  Parallel computing for the masses demands better parallel

programming paradigms
- And more people who are trained in writing parallel

programs (possibly you!)
- How to put all these vast machine resources to the best use!

7

Detour: Technology as Driver for
“Multi-Core” Paradigm Shift

• Do you know why most computers sold today are
parallel computers?

• Let’s talk about the technology trends

08/25/2009
 CS4961
 8

8/25/09

3

Technology Trends: Microprocessor Capacity

Slide source: Maurice Herlihy

Clock speed
flattening

sharply

Transistor
count still

rising

Moore’s Law:
Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor
density of semiconductor chips would double roughly every 18 months.
08/25/2009
 9
CS4961

Technology Trends: Power Density Limits
Serial Performance

08/25/2009
 CS4961
 10

• Key ideas:
- Movement away from increasingly complex processor design

and faster clocks
-  Replicated functionality (i.e., parallel) is simpler to design
-  Resources more efficiently utilized
- Huge power management advantages

What to do with all these transistors?

The Multi-Core Paradigm Shift

All Computers are Parallel Computers.
08/25/2009
 11
CS4961

Proof of Significance: Popular Press

08/25/2009
 CS4961

• This week’s issue of
Newsweek!

• Article on 25 things “smart
people” should know

• See
 http://www.newsweek.com/id/212142

12

8/25/09

4

08/25/2009
 CS4961

 Scientific Simulation:
The Third Pillar of Science

•  Traditional scientific and engineering paradigm:
1)  Do theory or paper design.
2)  Perform experiments or build system.

•  Limitations:
-  Too difficult -- build large wind tunnels.
-  Too expensive -- build a throw-away passenger jet.
-  Too slow -- wait for climate or galactic evolution.
-  Too dangerous -- weapons, drug design, climate

experimentation.

•  Computational science paradigm:
3)  Use high performance computer systems to simulate

the phenomenon
- Base on known physical laws and efficient numerical
methods.

13

The quest for increasingly more powerful machines

• Scientific simulation will continue to push on system
requirements:

- To increase the precision of the result
- To get to an answer sooner (e.g., climate modeling, disaster

modeling)

• The U.S. will continue to acquire systems of
increasing scale

-  For the above reasons
- And to maintain competitiveness

08/25/2009
 CS4961
 14

A Similar Phenomenon in Commodity Systems

• More capabilities in software
• Integration across software
• Faster response
• More realistic graphics
• …

CS4961
08/25/2009
 15

The fastest computer in the world today
• What is its name?

• Where is it located?

• How many processors does it have?

• What kind of processors?

• How fast is it?

RoadRunner

Los Alamos National
Laboratory

~19,000 processor chips
(~129,600 “processors”)

AMD Opterons and
IBM Cell/BE (in Playstations)

1.105 Petaflop/second
One quadrilion operations/s
1 x 1016

See http://www.top500.org
08/25/2009
 CS4961
 16

8/25/09

5

08/25/2009
 CS4961

Example: Global Climate Modeling Problem
• Problem is to compute:

f(latitude, longitude, elevation, time) 
 temperature, pressure, humidity, wind velocity

•  Approach:
- Discretize the domain, e.g., a measurement point every 10 km
- Devise an algorithm to predict weather at time t+δt given t

• Uses:
-  Predict major events,

e.g., El Nino
-  Use in setting air

emissions standards

Source: http://www.epm.ornl.gov/chammp/chammp.html
17

High Resolution
Climate Modeling on
NERSC-3 – P. Duffy,

et al., LLNL

08/25/2009
 CS4961
 18

08/25/2009
 CS4961

Some Characteristics of Scientific Simulation

• Discretize physical or conceptual space into a grid
- Simpler if regular, may be more representative if adaptive

• Perform local computations on grid
- Given yesterday’s temperature and weather pattern, what is

today’s expected temperature?

• Communicate partial results between grids
-  Contribute local weather result to understand global

weather pattern.

• Repeat for a set of time steps
• Possibly perform other calculations with results

- Given weather model, what area should evacuate for a
hurricane?

19

Example of Discretizing a Domain

08/25/2009
 CS4961

One
processor
computes
this part

Another
processor
computes
this part in
parallel

Processors in adjacent blocks in the grid communicate their result.

20

8/25/09

6

08/25/2009
 CS4961

Parallel Programming Complexity
An Analogy to Preparing Thanksgiving Dinner
•  Enough parallelism? (Amdahl’s Law)

-  Suppose you want to just serve turkey

•  Granularity
-  How frequently must each assistant report to the chef

-  After each stroke of a knife? Each step of a recipe? Each dish
completed?

•  Locality
-  Grab the spices one at a time? Or collect ones that are needed

prior to starting a dish?

•  Load balance
-  Each assistant gets a dish? Preparing stuffing vs. cooking green

beans?

•  Coordination and Synchronization
-  Person chopping onions for stuffing can also supply green beans
-  Start pie after turkey is out of the oven

All of these things makes parallel
programming even harder than sequential
programming.

21
 08/25/2009
 CS4961

Finding Enough Parallelism
• Suppose only part of an application seems parallel
• Amdahl’s law

-  let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

-  P = number of processors
Speedup(P) = Time(1)/Time(P)

 <= 1/(s + (1-s)/P)

 <= 1/s
• Even if the parallel part speeds up perfectly

performance is limited by the sequential part

22

08/25/2009
 CS4961

Overhead of Parallelism
• Given enough parallel work, this is the biggest barrier

to getting desired speedup
• Parallelism overheads include:

-  cost of starting a thread or process
-  cost of communicating shared data
-  cost of synchronizing
-  extra (redundant) computation

• Each of these can be in the range of milliseconds
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of
work to run fast in parallel (I.e. large granularity),
but not so large that there is not enough parallel
work

23
 08/25/2009
 CS4961

Locality and Parallelism

•  Large memories are slow, fast memories are small
•  Program should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

24

8/25/09

7

08/25/2009
 CS4961

Load Imbalance
• Load imbalance is the time that some processors in

the system are idle due to
-  insufficient parallelism (during that phase)
-  unequal size tasks

• Examples of the latter
-  adapting to “interesting parts of a domain”
-  tree-structured computations
-  fundamentally unstructured problems

• Algorithm needs to balance load

25

Some Popular Parallel Programming Models
• Pthreads (parallel threads)

-  Low level expression of threads, which are independent
computations that can execute in parallel

• MPI (Message Passing Interface)
- Most widely used at the very high-end machines
-  Extension to common sequential languages, express

communication between different processes along with
parallelism

• Map-Reduce (popularized by Google)
- Map: apply the same computation to lots of different data

(usually in distributed files) and produce local results
-  Reduce: compute global result from set of local results

• CUDA (Compute Unified Device Architecture)
-  Proprietary programming language for NVIDIA graphics

processors
08/25/2009
 CS4961
 26

08/25/2009
 CS4961

Summary of Lecture
• Solving the “Parallel Programming Problem”

-  Key technical challenge facing today’s computing industry,
government agencies and scientists

• Scientific simulation discretizes some space into a grid
-  Perform local computations on grid
-  Communicate partial results between grids
-  Repeat for a set of time steps
-  Possibly perform other calculations with results

•  Commodity parallel programming can draw from this history
and move forward in a new direction

• Writing fast parallel programs is difficult
-  Amdahl’s Law Must parallelize most of computation
-  Data Locality
-  Communication and Synchronization
-  Load Imbalance

27

Next Time
• An exploration of parallel algorithms and their

features
• First written homework assignment

08/25/2009
 CS4961
 28

