

Today's Lecture

- · Overview of course (done)
- Important problems require powerful computers ...
 - ... and powerful computers must be parallel.
 - Increasing importance of educating *parallel programmers* (you!)
- What sorts of architectures in this class - Multimedia extensions, multi-cores, GPUs,
 - networked clusters
- Developing high-performance parallel applications
- An optimization perspective

Outline

Logistics

з

- Introduction
- Technology Drivers for Multi-Core Paradigm Shift
- Origins of Parallel Programming: Large-scale scientific simulations
- The fastest computer in the world today
- Why writing fast parallel programs is hard Some material for this lecture drawn from: Kathy Yelick and Jim Demmel, UC Berkeley Quentin Stout, University of Michigan, (see http://www.eecs.umich.edu/~qstout/parallel.html) Top 500 list (http://www.top500.org) 08/25/2009 CS4961

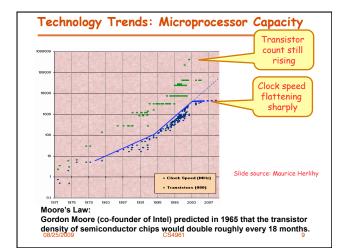
Course Objectives

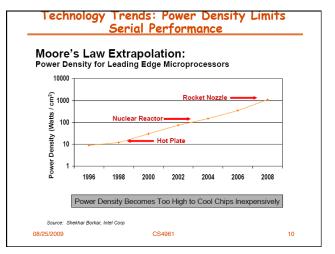
- \cdot Learn how to program parallel processors and systems
 - Learn how to think in parallel and write correct parallel programs
 - Achieve performance and scalability through understanding of architecture and software mapping
- Significant hands-on programming experience
 - Develop real applications on real hardware
- · Discuss the current parallel computing context
 - What are the drivers that make this course timely

5

7

- Contemporary programming models and
- architectures, and where is the field going 08/25/2009


Parallel and	Distributed Computing	
 Parallel computing 	ting (processing):	
- the use of tw within a sing single proble	o or more processors (computers le system, working simultaneously n.), usually v to solve a
• Distributed co	mputing (processing):	
	g that involves <i>multiple computer</i> ther that each have a role in a cor formation processing.	's remote nputation
 Parallel progra 	mming:	
- the human pr what compute	ocess of developing programs tha ations should be executed in para	t express llel.
08/25/2009	CS4961	6


Wh	<u>y is Parallel Programming Important Now?</u>
· All (ei	computers are now parallel computers nbedded, commodity, supercomputer)
-	On-chip architectures look like parallel computers
	Languages, software development and compilation strategies originally developed for high end (supercomputers) are now becoming important for many other domains
٠w	hy?
	· Technology trends
۰Lo	oking to the future
-	Parallel computing for the masses demands better parallel programming paradigms
	And more people who are trained in writing parallel programs (possibly you!)
-	How to put all these vast machine resources to the best use!

CS4961

08/25/2009

Detour: Technology as Driver for "Multi-Core" Paradigm Shift
Do you know why most computers sold today are parallel computers?
Let's talk about the technology trends

The Multi-Core Paradigm Shift

What to do with all these transistors?

- Key ideas:
 - Movement away from increasingly complex processor design and faster clocks
 - Replicated functionality (i.e., parallel) is simpler to design
 - Resources more efficiently utilized
 - Huge power management advantages

All Computers are Parallel Computers.

08/25/2009	
00.20.2000	

CS4961

11

Proof of Significance: Popular Press

- This week's issue of Newsweek!
- Article on 25 things "smart people" should know
- See

08/25/2009

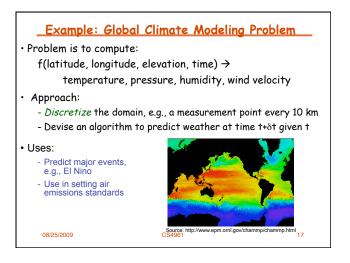
http://www.newsweek.com/id/212142

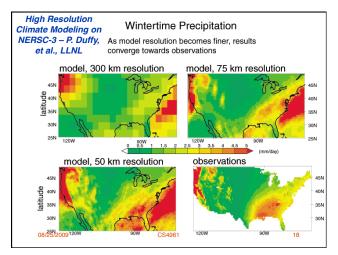
Scientific Simulation: The Third Pillar of Science

- Traditional scientific and engineering paradigm: 1)Do theory or paper design.
 - 2)Perform experiments or build system.
- Limitations:

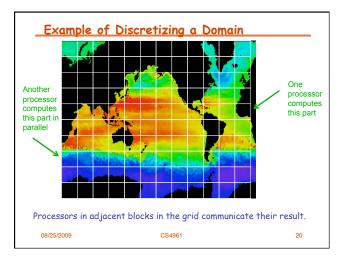
08/25/2009

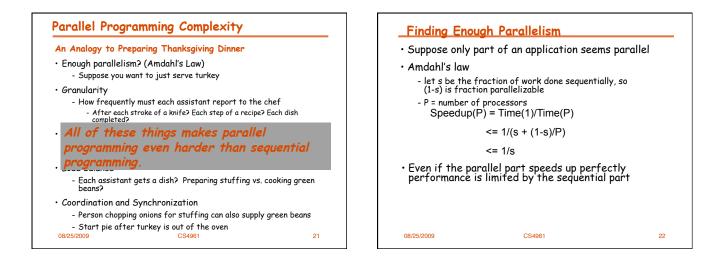
- Too difficult -- build large wind tunnels.
- Too expensive -- build a throw-away passenger jet.
- Too slow -- wait for climate or galactic evolution.
- Too dangerous -- weapons, drug design, climate experimentation.
- Computational science paradigm:
 - 3)Use high performance computer systems to simulate the phenomenon

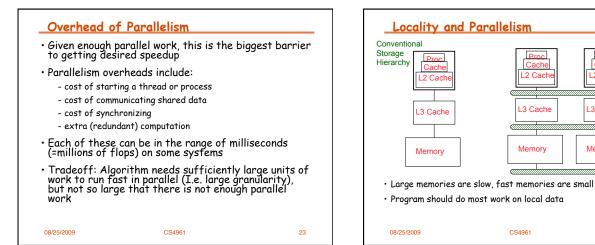

13


- Base on known physical laws and efficient numerical methods. CS4961

Th<u>e quest for increasingly more powerful machin</u>es • Scientific simulation will continue to push on system requirements - To increase the precision of the result - To get to an answer sooner (e.g., climate modeling, disaster modeling) The U.S. will continue to acquire systems of increasing scale - For the above reasons - And to maintain competitiveness 08/25/2009 CS4961 14


A Similar Phenomenon in Commodity Systems • More capabilities in software Integration across software Faster response More realistic graphics • ... 08/25/2009 CS4961 15


The fastest computer	r in the world today
• What is its name?	RoadRunner
• Where is it located?	Los Alamos National Laboratory
• How many processors does it	have? ~19,000 processor chips (~129,600 "processors")
• What kind of processors?	AMD Opterons and IBM Cell/BE (in Playstations)
• How fast is it?	1.105 Petaflop/second One quadrilion operations/s 1 × 10 ¹⁶
See http://www.top500.org 08/25/2009 CS-	1961 16

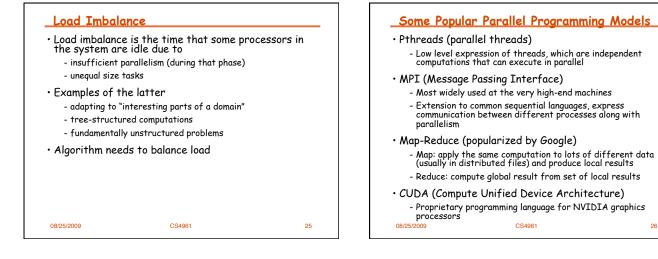


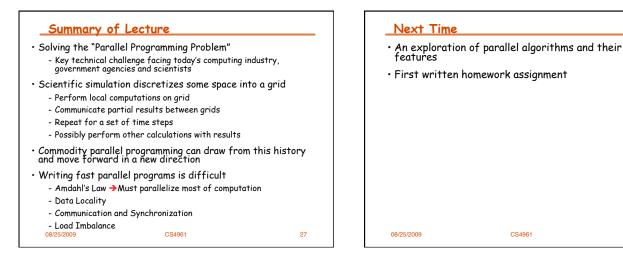
۰C	Discretize physical or conceptual space into a grid - Simpler if regular, may be more representative if adaptive
۰P	Perform local computations on grid - Given yesterday's temperature and weather pattern, what is today's expected temperature?
• 0	Communicate partial results between grids - Contribute local weather result to understand global weather pattern.
۰F	Repeat for a set of time steps
۰P	Possibly perform other calculations with results - Given weather model, what area should evacuate for a hurricane?

12 Cach

L3 Cache

Memory


otentia


24

CS4961

26

28

7