CS4961 Parallel Programming

Lecture 1: Introduction

Mary Hall
August 25, 2009

Course Details

+ Time and Location: TuTh, 9:10-10:30 AM, WEB L112

+ Course Website
- http://www.eng.utah.edu/~cs4961/

+ Instructor: Mary Hall, mhall@cs.utah.edu,
http://www.cs.ufah.edu/~mhall/

- Office Hours: Tu 10:45-11:15 AM; Wed 11:00-11:30 AM
+ TA: Sriram Aananthakrishnan, sriram@cs.utah.edu

- Office Hours: TBD

+ Textbook

- "Principles of Parallel Programming,”
Calvin Lin and Lawrence Snyder.

- Also, readings and notes provided for
MPT, CUDA, Locality and Parallel Algs.

08/25/2009 Cs4961 08/25/2009 54961
Today's Lecture Outline
+ Logistics

+ Overview of course (done)
* Important problems require powerful
computers ...
- ... and powerful computers must be parallel.
- Increasing importance of educating parallel
programmers (you!)
* What sorts of architectures in this class
- Multimedia extensions, multi-cores, GPUs,
networked clusters
* Developing high-performance parallel
applications

- An optimization perspective
08/25/2009 CS4961

+ Introduction
+ Technology Drivers for Multi-Core Paradigm Shift

+ Origins of Parallel Programming: Large-scale

scientific simulations

* The fastest computer in the world today
+ Why writing fast parallel programs is hard

Some material for this lecture drawn from:
Kathy Yelick and Jim Demmel, UC Berkeley
Quentin Stout, University of Michigan,
(see http://www.eecs.umich.edu/~gstout/parallel.html)
Top 500 list (http://www.top500.0rg)

08/25/2009 Cs4961

8/25/09

Course Objectives

* Learn how to program parallel processors and
systems

- Learn how to think in parallel and write correct
parallel programs

- Achieve performance and scalability through
understanding of architecture and software mapping
- Significant hands-on programming experience
- Develop real applications on real hardware

- Discuss the current parallel computing context
- What are the drivers that make this course timely
- Contemporary programming models and

architectures, and where is the field going
08/25/2009 CS4961

Parallel and Distributed Computing

* Parallel computing (processing):

- the use of two or more processors (computers), usually

within a single system, working simultaneously to solve a
single problem.

+ Distributed computing (processing):

- any computing that involves multiple computers remote
from each other that each have a role in a computation
problem or information processing.

* Parallel programming:

- the human process of developing programs that express
what computations should be executed in parallel.

08/25/2009 CS4961

Why is Parallel Programming Important Now?
+ All computers are now parallel computers
(embedded, commodity, supercomputer)
- On-chip architectures look like parallel computers

- Languaﬁes, software develoﬁmem and compilation strategies
originally developed for high end (supercomputers) are now
becoming important for many other domains

* Why?
- Technology trends
* Looking to the future

- Parallel computing for the masses demands better parallel
programming paradigms

- And more people who are trained in writing parallel
programs (possibly youl)

- How to put all these vast machine resources to the best usel!

08/25/2009 Cs4961

Defour: Technology as Driver for
“"Multi-Core” Paradigm Shift

+ Do you know why most computers sold today are
parallel computers?

+ Let's talk about the technology trends

08/25/2009 Cs4961

8/25/09

Technology Trends: Microprocessor Capacity

Transistor
1000000 count still
o

rising

100000

Clock speed
flattening
sharply

10000

= vt
e ~
0o ok /f
& A5

100

Slide source: Maurice Herlihy

* Clock Speed (MHz)
= Transistors (000)

o1 I
‘71 197 e tess weer tem w5 s 2003 2007

Moore’s Law:
Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor

densitx of semiconductor chips would double roughly every 18 months.
08/25/2009 CS4961 9

Technology Trends: Power Density Limits
Serial Performance

Moore’s Law Extrapolation:
Power Density for Leading Edge Microprocessors

10000
T Rocket Nozzl
E 1000 ocket Nozzle memmmmp-
g Nuclear Reactor sy
s 100 >
> v
B 10 o Hot Plate
<
@
(=]
§ 4 ,
o
o 1996 1998 2000 2002 2004 2006 2008

Power Density Becomes Too High to Cool Chips Inexpensively |

Source: Shekhar Borkar, intel Cor

08/25/2009 Cs4961

The Multi-Core Paradigm Shift

What to do with all these transistors?
+ Key ideas:

- Movement away from increasingly complex processor design
and faster clocks

- Replicated functionality (i.e., parallel) is simpler to design
- Resources more efficiently utilized
- Huge power management advantages

All Computers are Parallel Computers.

08/25/2009 Cs4961 1

Proof of Significance: Popular Press

+ This weekK's issue of
Newsweek!

+ Article on 25 things “smart
people” should know

*+ See
http://www.newsweek.com/id/212142

08/25/2009 CS4961

s
THE SMART LIST

QR
Moore’s Law Doesn'’t Matter ol RSONAL
it

8/25/09

5cie_n1ifi¢; Simulaﬁo_n:

Traditional scientific and engineering paradigm:

1)Do theory or paper design.

2)Perform experiments or build system.

Limitations:

- Too difficult -- build large wind tunnels.

- Too expensive -- build a throw-away passenger jet.

- Too slow -- wait for climate or galactic evolution.

- Too dangerous -- weapons, drug design, climate
experimentation.

Computational science paradigm:

3)Use high performance computer systems to simulate
the phenomenon

- Base on known physical laws and efficient numerical
methods.
08/25/2009 CS4961 13

The_quest for increasingly more powerful machines

+ Scientific simulation will continue to push on system
requirements:

- To increase the precision of the result
- To geT to an answer sooner (e.g., climate modeling, disaster
modeling)
+ The U.S. will continue to acquire systems of
increasing scale
- For the above reasons
- And fo maintain competitiveness

08/25/2009 CS4961 14

A Similar Phenomenon in Commodity Systems

* More capabilities in software
+ Integration across software
+ Faster response

* More realistic graphics

08/25/2009 Cs4961 15

The fastest computer in the world today

* What is its name? RoadRunner

Los Alamos National

* Where is it located? Laboratory

+ How many processors does it have? ~19,000 processor chips
(~129,600 “processors")

* What kind of processors?
AMD Opterons and

IBM Cell/BE (in Playstations)

* How fast is it? 1.105 Petaflop/second

One quadrilion operations/s

1x 10t
See http://www.top500.0rg
08/25/2009 CS4961 16

8/25/09

Example: Global Climate Modeling Problem

* Problem is to compute:
f(latitude, longitude, elevation, time) >
temperature, pressure, humidity, wind velocity

* Approach:
- Discretize the domain, e.g., a measurement point every 10 km
- Devise an algorithm to predict weather at time t+5t given t

« Uses:

- Predict major events,
e.g., EI Nino

- Use in setting air
emissions standards

Source: http:/fwww.epm.oml htmi
08/25/2009 CS4961

17

High Resolution . . L
c,,-mzte Modeling on Wintertime Precipitation

NERSC-3 — P. Duffy, As model resolution becomes finer, results
etal., LLNL converge towards observations

model, 300 km resolution model, 75 km resolution

a
&
z

2

@
°

=
=
Kt

8
2

H

5 X

®
b
z

120\ B

120W 120W
15 2 25 3 35 4 45 5

(mmJday)
observations
i

TCsdget 1AW oW 18

Some Characteristics of Scientific Simulation

- Discretize physical or conceptual space into a grid
- Simpler if regular, may be more representative if adaptive

* Perform local computations on grid

- Given yesterday's temperature and weather pattern, what is
today's expected temperature?

- Communicate partial results between grids

- Contribute local weather result to understand global
weather pattern.

* Repeat for a set of time steps

+ Possibly perform other calculations with results

- Given weather model, what area should evacuate for a
hurricane?

08/25/2009 Cs4961 19

Example of Discretizing a Domain

Another One
processor processor
computes cqmputes
this part in this part
parallel

Processors in adjacent blocks in the grid communicate their result.

08/25/2009 Cs4961 20

8/25/09

Parallel Programming Complexity

An Analogy to Preparing Thanksgiving Dinner
+ Enough parallelism? (Amdahl's Law)

- Suppose you want to just serve turkey
+ Granularity

- How frequently must each assistant report to the chef

- After each stroke of a knife? Each step of a recipe? Each dish
completed?

- Each assistant gets a dish? Preparing stuffing vs. cooking green
beans?

+ Coordination and Synchronization

- Person chopping onions for stuffing can also supply green beans

- Start pie after turkey is out of the oven
08/25/2009 CS4961 21

Finding Enough Parallelism

+ Suppose only part of an application seems parallel

+ Amdahl's law

- let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

- P = number of processors
Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P)
<=1/s

+ Even if the parallel part speeds up perfectly
performance is limited by the sequential part

08/25/2009 Cs4961 22

Overhead of Parallelism

+ Given enough parallel work, this is the biggest barrier
to getting desired speedup
* Parallelism overheads include:
- cost of starting a thread or process
- cost of communicating shared data
- cost of synchronizing
- extra (redundant) computation

+ Each of these can be in the range of milliseconds
(=millions of flops) on some sysfems

+ Tradeoff: Algorithm needs sufficiently large units of
work to run fast in parallel (I.e. large granularity),
but l:\of so large that there is not enough parallel
wor

08/25/2009 Cs4961 23

Locality and Parallelism

Conventional
Cache Cache]

Storage
Hierarchy
‘ L2 Cache‘ ‘ L2 Cache‘

L3 Cache ‘ L3 Cache ‘ L3 Cache /3
]
=3
@
Q
"

Memory Memory Memory /

4

+ Large memories are slow, fast memories are small
+ Program should do most work on local data

08/25/2009 Cs4961 24

lenuajod

8/25/09

Load Imbalance

* Load imbalance is the time that some processors in
the system are idle due to

- insufficient parallelism (during that phase)
- unequal size tasks

+ Examples of the latter
- adapting to “interesting parts of a domain”
- tree-structured computations
- fundamentally unstructured problems

+ Algorithm needs to balance load

Some Popular Parallel Programming Models
* Pthreads (parallel threads)

- Low level expression of threads, which are independent
computations that can execute in parallel
* MPT (Message Passing Interface)
- Most widely used at the very high-end machines
- Extension to common sequential languages, express
communication between different processes along with
parallelism
* Map-Reduce (popularized by Google)

- Map: apply the same computation to lots of different data
(usually in distributed files) and produce local results

- Reduce: compute global result from set of local results

+ CUDA (Compute Unified Device Architecture)
- Proprietary programming language for NVIDIA graphics

PI"OCCSSOT‘S
08/25/2009 CS4961 25 08/25/2009 CS4961 26
Summary of Lecture Next Time

+ Solving the "Parallel Programming Problem”
- Key technical challenge facing today's computing industry,
government agencies and scientists
+ Scientific simulation discretizes some space into a grid
- Perform local computations on grid
- Communicate partial results between grids
- Repeat for a set of time steps
- Possibly perform other calculations with results
+ Commodity parallel programming can draw from this history
and move ¥or‘war‘d in a new direction
+ Writing fast parallel programs is difficult
- Amdahl's Law - Must parallelize most of computation
- Data Locality
- Communication and Synchronization

- Load Imbalance
08/25/2009 Cs4961 27

+ An exploration of parallel algorithms and their
features

+ First written homework assignment

08/25/2009 Cs4961 28

8/25/09

