

Maximum-Likelihood Estimation
With Newton-Raphson Iteration

Vincent Kang Fu

CS 4961

December 2010

Background
● Newton-Raphson iteration for maximum-

likelihood estimation is implemented in
many professional statistical packages

● Can I write my own version in C that is
faster than these highly optimized
statistical packages?

Maximum Likelihood Estimation
● Prominent method for estimating statistical

models
● Choose model coefficients to maximize the

joint likelihood of the observed outcomes
● Statistical estimation becomes an

optimization problem
● Use Newton-Raphson iteration for

optimization

Newton-Raphson Iteration
● General method for optimizing a function
● Set the first derivative to zero and apply

Newton's method to solve
● Iterative procedure:

– β0 = starting value
– for until convergence doi=0,1,⋯,∞

i1=i−
∂2 l
∂2

−1 ∂ l
∂

Modeling Married Women's
Labor Force Participation

● N = 1,984,591 married women
from the 1990 US Census

● Model: Binary logit model
 = labor force participation probabilityp i
log

pi
1− pi

=01 x1i2 x 2i⋯

Data Arrays

● Y is an N x 1 vector where y
i
 = 1 for women

in the labor force, 0 otherwise
● X is an N x K array of covariates including

race, education, age, other income in the
household, household size, presence of
young children

Maximum Lilkelihood Estimation
● The likelihood L is the joint probability of

the observed outcomes
● Find coefficients β to maximize L

● Easier to maximize l, the log likelihood
● Need the first and second derivatives for

Newton-Raphson iteration

p i=
exp  ' x i

1exp ' x i
L =∏

y i=1
pi∏
y i=0

1−p i ,

First Derivative

∂ l
∂

=[∑  y i− pi x0i

∑  y i− pi x1i

⋮
∑  y i− pix Ki

]● Calculating
elements in
parallel sacrifices
locality in access
to X array

for (i = 0; i < N; i++)
for (k = 0; k < REGRESSORS; k++)

result[k] += (y[i] - p[i])*x[i][k];

Second Derivative

∂2 l
∂2=−[∑ p i1− pi x0i

2 ∑ pi 1−p ix0i x1i ⋯ ∑ pi 1−p ix0i xKi
∑ pi 1− pix1i x0i ∑ p i1− pix1i

2 ⋯ ∑ pi 1−p ix1i xKi
⋮ ⋮ ⋯ ⋮

∑ pi 1−p ixKi x0i ∑ pi1−p i xKi x1i ⋯ ∑ p i1− pixKi
2]

for(r = 0; r < REGRESSORS; r++)
for(i = 0; i < N; i++)

for(c = 0; c < REGRESSORS; c++)
result[r][c] += p[i]*(1-p[i])*x[i][r]*x[i][c];

Optimization
● Take advantage of locality in looping
● Openmp

– Task parallelism: calculate first and second
derivatives in parallel

– Openmp reduction clause cannot operate
on array targets

● SSE3 Vector optimization

i1=i−
∂2 l
∂2

−1 ∂ l
∂

Linear Algebra
● Because inverting

a matrix is costly,
use Intel MKL's
LAPACKE_dgesv
to solve the linear
system for the δ
vector in the
update step of
each Newton-
Raphson iteration

∂2 l
∂2 [0

1

⋮
K
]= ∂ l

∂

i1=i−

Platform
● Intel Core i3-530 2 cores, 4 threads

– Private 32K + 32K L1 cache
– Private 256K L2 cache
– Shared 4MB L3 cache

● Ubuntu Linux 10.10 32-bit edition
– Intel icc 11.1.073
– Intel MKL 10.3.1.107 (linear algebra)

● Windows XP SP3
– Stata/SE 10.1

Execution Time by Platform

Stata/SE 10.1 Naïve sequential Locality Locality +
Openmp

Locality + SSE3 Locality +
Openmp +
SSE3

0

5

10

15

20

25

30

15

27

3.2
2.1

3.2
2.1

Platform

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Discussion
● My implementation was faster!
● Great benefit from locality optimization
● Small improvement from openmp
● No benefit from SSE3
● Suggestions welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

