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Background
● Newton-Raphson iteration for maximum-

likelihood estimation is implemented in 
many professional statistical packages

● Can I write my own version in C that is 
faster than these highly optimized  
statistical packages?



  

Maximum Likelihood Estimation
● Prominent method for estimating statistical 

models
● Choose model coefficients to maximize the 

joint likelihood of the observed outcomes
● Statistical estimation becomes an 

optimization problem
● Use Newton-Raphson iteration for 

optimization



  

Newton-Raphson Iteration
● General method for optimizing a function
● Set the first derivative to zero and apply 

Newton's method to solve
● Iterative procedure:

– β0 = starting value
– for                      until convergence doi=0,1,⋯,∞

i1=i−
∂2 l
∂2

−1 ∂ l
∂



  

Modeling Married Women's 
Labor Force Participation

● N = 1,984,591 married women
from the 1990 US Census 

● Model: Binary logit model
   = labor force participation probabilityp i
log

pi
1− pi

=01 x1i2 x 2i⋯



  

Data Arrays

● Y is an N x 1 vector where y
i
 = 1 for women 

in the labor force, 0 otherwise
● X is an N x K array of covariates including 

race, education, age, other income in the 
household, household size, presence of 
young children



  

Maximum Lilkelihood Estimation
● The likelihood L is the joint probability of 

the observed outcomes
● Find coefficients β to maximize L

● Easier to maximize l, the log likelihood
● Need the first and second derivatives for 

Newton-Raphson iteration

p i=
exp  ' x i

1exp ' x i
L =∏

y i=1
pi∏
y i=0

1−p i ,



  

First Derivative

∂ l
∂

=[∑  y i− pi x0i

∑  y i− pi x1i

⋮
∑  y i− pix Ki

]● Calculating 
elements in 
parallel sacrifices 
locality in access 
to X array

for (i = 0; i < N; i++)
for (k = 0; k < REGRESSORS; k++)

result[k] += (y[i] - p[i])*x[i][k];



  

Second Derivative

∂2 l
∂2=−[ ∑ p i1− pi x0i

2 ∑ pi 1−p ix0i x1i ⋯ ∑ pi 1−p ix0i xKi
∑ pi 1− pix1i x0i ∑ p i1− pix1i

2 ⋯ ∑ pi 1−p ix1i xKi
⋮ ⋮ ⋯ ⋮

∑ pi 1−p ixKi x0i ∑ pi1−p i xKi x1i ⋯ ∑ p i1− pixKi
2 ]

for(r = 0; r < REGRESSORS; r++)
for(i = 0; i < N; i++)

for(c = 0; c < REGRESSORS; c++)
result[r][c] += p[i]*(1-p[i])*x[i][r]*x[i][c];



  

Optimization
● Take advantage of locality in looping
● Openmp

– Task parallelism: calculate first and second 
derivatives in parallel

– Openmp reduction clause cannot operate 
on array targets

● SSE3 Vector optimization

i1=i−
∂2 l
∂2

−1 ∂ l
∂



  

Linear Algebra
● Because inverting 

a matrix is costly, 
use Intel MKL's  
LAPACKE_dgesv 
to solve the linear 
system for the δ 
vector in the 
update step of 
each Newton-
Raphson iteration

∂2 l
∂2 [0

1

⋮
K
]= ∂ l

∂

i1=i−



  

Platform
● Intel Core i3-530 2 cores, 4 threads

– Private 32K + 32K L1 cache
– Private 256K L2 cache
– Shared 4MB L3 cache

● Ubuntu Linux 10.10 32-bit edition
– Intel icc 11.1.073
– Intel MKL 10.3.1.107 (linear algebra)

● Windows XP SP3 
– Stata/SE 10.1



  

Execution Time by Platform

Stata/SE 10.1 Naïve sequential Locality Locality + 
Openmp

Locality + SSE3 Locality + 
Openmp + 
SSE3
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Discussion
● My implementation was faster!
● Great benefit from locality optimization
● Small improvement from openmp
● No benefit from SSE3
● Suggestions welcome!
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