
L20: Sparse Matrix
Algorithms, SIMD review!

November 15, 2012!

Administrative
• CUDA Project 5, due November 28 (no extension)

- Available on CADE Linux machines (lab1 and lab3) and
Windows machines (lab5 and lab6)

-  You can also use your own Nvidia GPUs

Project 5, Due November 28 at 11:59PM
The code in sparse_matvec.c is a sequential version of a sparse
matrix-vector multiply. The matrix is sparse in that many of its
elements are zero. Rather than representing all of these zeros
which wastes storage, the code uses a representation called
Compressed Row Storage (CRS), which only represents the
nonzeros with auxiliary data structures to keep track of their
location in the full matrix.

I provide:
Sparse input matrices which were generated from the
MatrixMarket (see http://math.nist.gov/MatrixMarket/).
Sequential code that includes conversion from coordinate matrix
to CRS.
An implementation of dense matvec in CUDA.
A Makefile for the CADE Linux machines.

You write:
 A CUDA implementation of sparse matvec

Outline

• Sources for this lecture:
-  “Implementing Sparse Matrix-Vector Multiplication on

Throughput Oriented Processors,” Bell and Garland (Nvidia),
SC09, Nov. 2009.

Sparse Linear Algebra

• Suppose you are applying matrix-vector multiply and
the matrix has lots of zero elements

-  Computation cost? Space requirements?

• General sparse matrix representation concepts
-  Primarily only represent the nonzero data values
- Auxiliary data structures describe placement of nonzeros in

“dense matrix”

Some common representations

 1 7 0 0
 0 2 8 0
 5 0 3 9
 0 6 0 4

[] A =

data =
 * 1 7
 * 2 8
 5 3 9
 6 4 *

[]
 1 7 *
 2 8 *
 5 3 9
 6 4 *

[] 0 1 *
 1 2 *
 0 2 3
 1 3 *

[]

offsets = [-2 0 1]

data = indices =

ptr = [0 2 4 7 9]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

row = [0 0 1 1 2 2 2 3 3]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

DIA: Store elements along a set of diagonals.

Compressed Sparse Row (CSR):
Store only nonzero elements, with
“ptr” to beginning of each row and
“indices” representing column.

ELL: Store a set of K elements per row and
pad as needed. Best suited when number
non-zeros roughly consistent across rows.

COO: Store nonzero elements and
their corresponding “coordinates”.

Connect to dense linear algebra

Equivalent CSR matvec:
for (i=0; i<nr; i++) {
 for (j = ptr[i]; j<ptr[i+1]-1; j++)
 t[i] += data[j] * b[indices[j]];

Dense matvec from L18:
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 a[i] += c[j][i] * b[j];
 }
}

