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Dense Linear Algebra and 

Locality Optimizations 

Mary Hall  
September 13, 2012 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Administrative 
• I will be on travel again Tuesday, September 18 
• Axel will provide the algorithm description for 

Singular Value Decomposition, which is our next 
programming assignment 
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Today’s Lecture 
• Dense Linear Algebra, from video 
• Locality 

- Data reuse vs. data locality 
- Reordering transformations for locality 

• Sources for this lecture: 
- Notes on website 
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Back to basics:  
Why avoiding communication is important (1/2) 
Algorithms have two costs: 
1. Arithmetic (FLOPS) 
2. Communication: moving data between  

-  levels of a memory hierarchy (sequential case)  
-  processors over a network (parallel case).  
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Why avoiding communication is important (2/2) 
•  Running time of an algorithm is sum of 3 terms: 

-  # flops * time_per_flop 
-  # words moved / bandwidth 
-  # messages * latency 

5!

communica(on	
  

•  Time_per_flop  <<  1/ bandwidth  <<  latency 
•  Gaps growing exponentially with time 

•  Goal : organize linear algebra to avoid communication 
•  Between all memory hierarchy levels  

•  L1         L2         DRAM          network,  etc  
•  Not just hiding communication (overlap with arith) (speedup ≤ 2x )  
•  Arbitrary speedups possible 

Annual improvements 
Time_per_flop Bandwidth Latency 

Network 26% 15% 
DRAM 23% 5% 

59% 

Slide source: Jim Demmel, CS267!

for i = 1 to n 
  {read row i of A into fast memory,  n2 reads} 
   for j = 1 to n 
       {read C(i,j) into fast memory, n2 reads} 
       {read column j of B into fast memory, n3 reads} 
       for k = 1 to n 
           C(i,j) = C(i,j) + A(i,k) * B(k,j) 
       {write C(i,j) back to slow memory, n2 writes} 
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Review: Naïve Sequential MatMul:  C = C + 
A*B 

= + * 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

n3 + O(n2) reads/writes altogether 
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Less Communication with Blocked Matrix Multiply 
• Blocked Matmul C = A·B explicitly refers to subblocks 

of A, B and C of dimensions that depend on cache size 
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… Break Anxn, Bnxn, Cnxn into bxb blocks labeled  A(i,j), etc 
…  b chosen so 3 bxb blocks fit in cache 
for i = 1 to n/b,   for j=1 to n/b,   for k=1 to n/b 
      C(i,j) = C(i,j) + A(i,k)·B(k,j)      …  b x b matmul,  4b2 reads/writes 

•   (n/b)3 · 4b2 = 4n3/b reads/writes altogether 
•  Minimized when 3b2 = cache size = M, yielding O(n3/M1/2) reads/writes 

•  What if we had more levels of memory? (L1, L2, cache etc)? 
•  Would need 3 more nested loops per level 
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Blocked vs Cache-Oblivious Algorithms 
• Blocked Matmul C = A·B explicitly refers to subblocks 

of A, B and C of dimensions that depend on cache size 

8!

… Break Anxn, Bnxn, Cnxn into bxb blocks labeled  A(i,j), etc 
…  b chosen so 3 bxb blocks fit in cache 
for i = 1 to n/b,   for j=1 to n/b,   for k=1 to n/b 
      C(i,j) = C(i,j) + A(i,k)·B(k,j)      …  b x b matmul 
       …  another level of memory would need 3 more loops 

• Cache-oblivious Matmul C = A·B is independent of cache 
Function C = RMM(A,B)   … R for recursive  
If A and B are 1x1   
     C = A · B 
else   … Break Anxn, Bnxn, Cnxn into (n/2)x(n/2) blocks labeled  A(i,j), etc 
     for  i = 1 to 2,    for  j = 1 to 2,    for  k = 1 to 2 
          C(i,j) = C(i,j) + RMM( A(i,k), B(k,j) )      …  n/2 x n/2 matmul 
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Communication Lower Bounds:    Prior Work on Matmul 
• Assume  n3 algorithm  (i.e. not Strassen-like) 
• Sequential case, with fast memory of size M 

-  Lower bound on  #words moved to/from slow memory  = Ω (n3 / 
M1/2 )    [Hong, Kung, 81]  

- Attained using blocked or cache-oblivious algorithms 

9!

• Parallel case on P processors: 
•  Let M be memory per processor; assume load balanced 
•  Lower bound on #words moved                                         

= Ω (n3 /(p · M1/2 ))        [Irony, Tiskin, Toledo, 04] 
•  If M = 3n2/p (one copy of each matrix), then                 

lower bound = Ω (n2 /p1/2 )  
• Attained by SUMMA, Cannon’s algorithm 

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

New lower bound for all “direct” linear 
algebra 

•  Holds for 
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, … 
- Some whole programs (sequences of  these operations, no 

matter how they are interleaved, eg computing Ak) 
- Dense and sparse matrices (where #flops  <<  n3 ) 
- Sequential and parallel algorithms 
- Some graph-theoretic algorithms (eg Floyd-Warshall) 

•  Proof later 
10!

Let M = “fast” memory size per processor 
          = cache size (sequential case) or O(n2/p) (parallel case) 
#flops = number of flops done per processor 

     #words_moved per processor = Ω(#flops / M1/2 )  

     #messages_sent per processor = Ω (#flops / M3/2 )  

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

New lower bound for all “direct” linear algebra 

•  Sequential case, dense n x n matrices, so O(n3) flops 
- #words_moved = Ω(n3/ M1/2 ) 
- #messages_sent =  Ω(n3/ M3/2 ) 

•  Parallel case, dense n x n matrices 
-  Load balanced, so   O(n3/p) flops processor 
- One copy of data, load balanced, so M = O(n2/p) per 

processor 
- #words_moved = Ω(n2/ p1/2 ) 
- #messages_sent = Ω( p1/2 ) 
-    11!

Let M = “fast” memory size per processor 
          = cache size (sequential case) or O(n2/p) (parallel case) 
#flops = number of flops done per processor 
     #words_moved per processor = Ω(#flops / M1/2 )  
     #messages_sent per processor = Ω (#flops / M3/2 )  

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

Can we attain these lower bounds? 
•  Do conventional dense algorithms as implemented in  LAPACK and 

ScaLAPACK attain these bounds? 
- Mostly not  

•  If not, are there other algorithms that do? 
-  Yes 

•  Goals for algorithms: 
- Minimize #words_moved 
- Minimize #messages_sent 

- Need new data structures 
- Minimize for multiple memory hierarchy levels 

-  Cache-oblivious algorithms would be simplest 
-  Fewest flops when matrix fits in fastest memory 

-  Cache-oblivious algorithms don’t  always attain  this 

•  Attainable for nearly all dense linear algebra 
- Just a few prototype implementations so far (class projects!) 
- Only a few sparse algorithms so far (eg Cholesky) 12!02/21/2012!

CS267 Lecture 11!
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Data Dependence and Related Definitions 

•  Definition: 
Two memory accesses are involved in a data dependence if they may 
refer to the same memory location and one of the references is a 
write. 

A data dependence can either be between two distinct program 
statements or two different dynamic executions of the same program 
statement. 

•  Source:  
•  “Optimizing Compilers for Modern Architectures:  A Dependence-Based 

Approach”, Allen and Kennedy, 2002, Ch. 2.  

09/13/2012! 13!CS4230!

Fundamental Theorem of Dependence 

• Theorem 2.2: 
- Any reordering transformation that preserves 

every dependence in a program preserves the 
meaning of that program. 
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In this course, we consider two kinds of reordering 
transformations 

• Parallelization 
- Computations that execute in parallel between 

synchronization points are potentially reordered.  Is 
that reordering safe?  According to our definition, it is 
safe if it preserves the dependences in the code. 

• Locality optimizations 
- Suppose we want to modify the order in which a 

computation accesses memory so that it is more likely 
to be in cache.  This is also a reordering 
transformation, and it is safe if it preserves the 
dependences in the code. 

• Reduction computations 
- We have to relax this rule for reductions.  It is safe to reorder 

reductions for commutative and associative operations. 
09/13/2012! 15!CS4230!

Targets of Memory Hierarchy Optimizations 

• Reduce memory latency 
-   The latency of a memory access is the time (usually in cycles) 

between a memory request and its completion 

• Maximize memory bandwidth 
-  Bandwidth is the amount of useful data that can be retrieved 

over a time interval 

• Manage overhead 
-  Cost of performing optimization (e.g., copying) should be less 

than anticipated gain 

09/13/2012! CS4230! 16!
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Reuse and Locality 
• Consider how data is accessed 

- Data reuse:  
- Same or nearby data used multiple times  
- Intrinsic in computation  

- Data locality:  
- Data is reused and is present in “fast memory” 
- Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
-  Appropriate data placement and layout 
-  Code reordering transformations 
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Exploiting Reuse: Locality optimizations 
• We will study a few loop transformations that 

reorder memory accesses to improve locality. 
• These transformations are also useful for 

parallelization too (to be discussed later). 
• Two key questions: 

- Safety:  
- Does the transformation preserve dependences? 

-  Profitability: 
-  Is the transformation likely to be profitable? 
- Will the gain be greater than the overheads (if any) associated 

with the transformation? 
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for (j=0; j<6; j++) 
 for (i= 0; i<3; i++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order 

NOTE: C multi-dimensional arrays are stored in row-major order, Fortran 
in column major 

Loop Transformations: Loop Permutation 
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Tiling (Blocking): 
Another Loop Reordering Transformation 

• Blocking reorders loop iterations to bring iterations 
that reuse data closer in time 

• Goal is to retain in cache/register/scratchpad (or 
other constrained memory structure) between 
reuse 

J 

I 

J 

I 
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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] +B[j,i] 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j,i] 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

   for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j,i] 

Permute 
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• Unroll simply replicates the statements in a loop, with 
the number of copies called the unroll factor 

• As long as the copies don’t go past the iterations in 
the original loop, it is always safe 

- May require “cleanup” code 

• Unroll-and-jam involves unrolling an outer loop and 
fusing together the copies of the inner loop (not 
always safe) 

• One of the most effective optimizations there is, but 
there is a danger in unrolling too much 

Unroll, Unroll-and-Jam 

Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i]; 

Unroll j 
for (i=0; i<4; i++) 
 for (j=0; j<8; j+=2) 
  A[i][j] = B[j+1][i]; 
  A[i][j+1] = B[j+2][i]; 

Unroll-and-jam i 
for (i= 0; i<4; i+=2) 
 for (j=0; j<8; j++)  
   A[i][j] = B[j+1][i]; 
   A[i+1][j] = B[j+1][i+1]; 
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How does Unroll-and-Jam benefit locality? 

• Temporal reuse of B in registers 
• More if I loop is unrolled further 
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Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i] + B[j+1][i+1];  

Unroll-and-jam i and j loops 
for (i=0; i<4; i+=2) 
 for (j=0; j<8; j+=2) { 
  A[i][j]   = B[j+1][i] + B[j+1][i+1]; 
  A[i+1][j] = B[j+1][i+1] + B[j+1][i+2]; 
  A[i][j+1] = B[j+2][i] + B[j+2][i+1]; 
  A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];  
} 

Other advantages of Unroll-and-Jam 

• Less loop control 
• Independent computations for instruction-level 

parallelism 
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Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i] + B[j+1][i+1];  

Unroll-and-jam i and j loops 
for (i=0; i<4; i+=2) 
 for (j=0; j<8; j+=2) { 
  A[i][j]   = B[j+1][i] + B[j+1][i+1]; 
  A[i+1][j] = B[j+1][i+1] + B[j+1][i+2]; 
  A[i][j+1] = B[j+2][i] + B[j+2][i+1]; 
  A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];  
} 
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B 

B 
A 
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B 
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A 
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How to determine safety of reordering 
transformations 

• Informally  
- Must preserve relative order of dependence source and sink 
- So, cannot reverse order 

• Formally 
- Tracking dependences 
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Safety of Permutation 
• Cannot reverse any dependences 
• Ok to permute? 
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for (i= 0; i<3; i++) 
   for (j=0; j<6; j++) 

 A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
  for (j=1; j<6; j++) 

A[i+1][j-1]=A[i][j]+B[j]; 

27!

Safety of Tiling 

• Tiling = strip-mine and permutation 
- Strip-mine does not reorder iterations 
- Permutation must be legal 
OR 
-  strip size less than dependence 
distance 
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Safety of Unroll-and-Jam 

• Unroll-and-jam = tile + unroll 
- Permutation must be legal 
OR 
-  unroll less than dependence distance 

09/13/2012! CS4230!
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Unroll-and-jam = tile + unroll? 
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Unroll i tile: 
for (ii= 0; ii<4; ii+=2) 
 for (j=0; j<8; j++)  
   A[i][j] = B[j+1][i]; 
   A[i+1][j] = B[j+1][i+1]; 

Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i]; 

Tile i loop: 
for (ii=0; ii<4; ii+=2) 
 for (j=0; j<8; j++) 
   for (i=ii; i<ii+2; i++)  
      A[i][j] = B[j+1][i]; 


