
9/13/12

1

09/13/2012! CS4230!

CS4230 Parallel Programming  

Lecture 8:  
Dense Linear Algebra and

Locality Optimizations 

Mary Hall  
September 13, 2012 

1!

Administrative
• I will be on travel again Tuesday, September 18
• Axel will provide the algorithm description for

Singular Value Decomposition, which is our next
programming assignment

09/13/2012! CS4230! 2!

Today’s Lecture
• Dense Linear Algebra, from video
• Locality

- Data reuse vs. data locality
- Reordering transformations for locality

• Sources for this lecture:
- Notes on website

09/13/2012! 3!CS4230! 4!

Back to basics:
Why avoiding communication is important (1/2)
Algorithms have two costs:
1. Arithmetic (FLOPS)
2. Communication: moving data between

-  levels of a memory hierarchy (sequential case)
-  processors over a network (parallel case).

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Slide source: Jim Demmel, CS267! CS267 Lecture 11!

9/13/12

2

Why avoiding communication is important (2/2)
•  Running time of an algorithm is sum of 3 terms:

-  # flops * time_per_flop
-  # words moved / bandwidth
-  # messages * latency

5!

communica(on	

•  Time_per_flop << 1/ bandwidth << latency
•  Gaps growing exponentially with time

•  Goal : organize linear algebra to avoid communication
•  Between all memory hierarchy levels

•  L1 L2 DRAM network, etc
•  Not just hiding communication (overlap with arith) (speedup ≤ 2x)
•  Arbitrary speedups possible

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%

Slide source: Jim Demmel, CS267!

for i = 1 to n
 {read row i of A into fast memory, n2 reads}
 for j = 1 to n
 {read C(i,j) into fast memory, n2 reads}
 {read column j of B into fast memory, n3 reads}
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 {write C(i,j) back to slow memory, n2 writes}

6!

Review: Naïve Sequential MatMul: C = C +
A*B

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

n3 + O(n2) reads/writes altogether

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

Less Communication with Blocked Matrix Multiply
• Blocked Matmul C = A·B explicitly refers to subblocks

of A, B and C of dimensions that depend on cache size

7!

… Break Anxn, Bnxn, Cnxn into bxb blocks labeled A(i,j), etc
… b chosen so 3 bxb blocks fit in cache
for i = 1 to n/b, for j=1 to n/b, for k=1 to n/b
 C(i,j) = C(i,j) + A(i,k)·B(k,j) … b x b matmul, 4b2 reads/writes

•  (n/b)3 · 4b2 = 4n3/b reads/writes altogether
•  Minimized when 3b2 = cache size = M, yielding O(n3/M1/2) reads/writes

•  What if we had more levels of memory? (L1, L2, cache etc)?
•  Would need 3 more nested loops per level

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

Blocked vs Cache-Oblivious Algorithms
• Blocked Matmul C = A·B explicitly refers to subblocks

of A, B and C of dimensions that depend on cache size

8!

… Break Anxn, Bnxn, Cnxn into bxb blocks labeled A(i,j), etc
… b chosen so 3 bxb blocks fit in cache
for i = 1 to n/b, for j=1 to n/b, for k=1 to n/b
 C(i,j) = C(i,j) + A(i,k)·B(k,j) … b x b matmul
 … another level of memory would need 3 more loops

• Cache-oblivious Matmul C = A·B is independent of cache
Function C = RMM(A,B) … R for recursive
If A and B are 1x1
 C = A · B
else … Break Anxn, Bnxn, Cnxn into (n/2)x(n/2) blocks labeled A(i,j), etc
 for i = 1 to 2, for j = 1 to 2, for k = 1 to 2
 C(i,j) = C(i,j) + RMM(A(i,k), B(k,j)) … n/2 x n/2 matmul

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

9/13/12

3

Communication Lower Bounds: Prior Work on Matmul
• Assume n3 algorithm (i.e. not Strassen-like)
• Sequential case, with fast memory of size M

-  Lower bound on #words moved to/from slow memory = Ω (n3 /
M1/2) [Hong, Kung, 81]

- Attained using blocked or cache-oblivious algorithms

9!

• Parallel case on P processors:
•  Let M be memory per processor; assume load balanced
•  Lower bound on #words moved

= Ω (n3 /(p · M1/2)) [Irony, Tiskin, Toledo, 04]
•  If M = 3n2/p (one copy of each matrix), then

lower bound = Ω (n2 /p1/2)
• Attained by SUMMA, Cannon’s algorithm

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

New lower bound for all “direct” linear
algebra

•  Holds for
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
- Some whole programs (sequences of these operations, no

matter how they are interleaved, eg computing Ak)
- Dense and sparse matrices (where #flops << n3)
- Sequential and parallel algorithms
- Some graph-theoretic algorithms (eg Floyd-Warshall)

•  Proof later
10!

Let M = “fast” memory size per processor
 = cache size (sequential case) or O(n2/p) (parallel case)
#flops = number of flops done per processor

 #words_moved per processor = Ω(#flops / M1/2)

 #messages_sent per processor = Ω (#flops / M3/2)

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

New lower bound for all “direct” linear algebra

•  Sequential case, dense n x n matrices, so O(n3) flops
- #words_moved = Ω(n3/ M1/2)
- #messages_sent = Ω(n3/ M3/2)

•  Parallel case, dense n x n matrices
-  Load balanced, so O(n3/p) flops processor
- One copy of data, load balanced, so M = O(n2/p) per

processor
- #words_moved = Ω(n2/ p1/2)
- #messages_sent = Ω(p1/2)
-  11!

Let M = “fast” memory size per processor
 = cache size (sequential case) or O(n2/p) (parallel case)
#flops = number of flops done per processor
 #words_moved per processor = Ω(#flops / M1/2)
 #messages_sent per processor = Ω (#flops / M3/2)

CS267 Lecture 11!Slide source: Jim Demmel, CS267!

Can we attain these lower bounds?
•  Do conventional dense algorithms as implemented in LAPACK and

ScaLAPACK attain these bounds?
- Mostly not

•  If not, are there other algorithms that do?
-  Yes

•  Goals for algorithms:
- Minimize #words_moved
- Minimize #messages_sent

- Need new data structures
- Minimize for multiple memory hierarchy levels

-  Cache-oblivious algorithms would be simplest
-  Fewest flops when matrix fits in fastest memory

-  Cache-oblivious algorithms don’t always attain this

•  Attainable for nearly all dense linear algebra
- Just a few prototype implementations so far (class projects!)
- Only a few sparse algorithms so far (eg Cholesky) 12!02/21/2012!

CS267 Lecture 11!

9/13/12

4

Data Dependence and Related Definitions

•  Definition:
Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same program
statement.

•  Source:
•  “Optimizing Compilers for Modern Architectures: A Dependence-Based

Approach”, Allen and Kennedy, 2002, Ch. 2.

09/13/2012! 13!CS4230!

Fundamental Theorem of Dependence

• Theorem 2.2:
- Any reordering transformation that preserves

every dependence in a program preserves the
meaning of that program.

09/13/2012!14! CS4230!

In this course, we consider two kinds of reordering
transformations

• Parallelization
- Computations that execute in parallel between

synchronization points are potentially reordered. Is
that reordering safe? According to our definition, it is
safe if it preserves the dependences in the code.

• Locality optimizations
- Suppose we want to modify the order in which a

computation accesses memory so that it is more likely
to be in cache. This is also a reordering
transformation, and it is safe if it preserves the
dependences in the code.

• Reduction computations
- We have to relax this rule for reductions. It is safe to reorder

reductions for commutative and associative operations.
09/13/2012! 15!CS4230!

Targets of Memory Hierarchy Optimizations

• Reduce memory latency
-  The latency of a memory access is the time (usually in cycles)

between a memory request and its completion

• Maximize memory bandwidth
-  Bandwidth is the amount of useful data that can be retrieved

over a time interval

• Manage overhead
-  Cost of performing optimization (e.g., copying) should be less

than anticipated gain

09/13/2012! CS4230! 16!

9/13/12

5

Reuse and Locality
• Consider how data is accessed

- Data reuse:
- Same or nearby data used multiple times
- Intrinsic in computation

- Data locality:
- Data is reused and is present in “fast memory”
- Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
-  Appropriate data placement and layout
-  Code reordering transformations

09/13/2012! CS4230! 17!

Exploiting Reuse: Locality optimizations
• We will study a few loop transformations that

reorder memory accesses to improve locality.
• These transformations are also useful for

parallelization too (to be discussed later).
• Two key questions:

- Safety:
- Does the transformation preserve dependences?

-  Profitability:
-  Is the transformation likely to be profitable?
- Will the gain be greater than the overheads (if any) associated

with the transformation?

09/13/2012! CS4230! 18!

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order! i

j

Permute the order of the loops to modify the traversal order

NOTE: C multi-dimensional arrays are stored in row-major order, Fortran
in column major

Loop Transformations: Loop Permutation

09/13/2012 19!CS4230! 20!

Tiling (Blocking):
Another Loop Reordering Transformation

• Blocking reorders loop iterations to bring iterations
that reuse data closer in time

• Goal is to retain in cache/register/scratchpad (or
other constrained memory structure) between
reuse

J

I

J

I

09/13/2012! CS4230!

9/13/12

6

21!

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] +B[j,i]

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j,i]

Strip
mine

for (ii=1; ii<N; ii+=s)
 for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j,i]

Permute

09/13/2012! CS4230!

• Unroll simply replicates the statements in a loop, with
the number of copies called the unroll factor

• As long as the copies don’t go past the iterations in
the original loop, it is always safe

- May require “cleanup” code

• Unroll-and-jam involves unrolling an outer loop and
fusing together the copies of the inner loop (not
always safe)

• One of the most effective optimizations there is, but
there is a danger in unrolling too much

Unroll, Unroll-and-Jam

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];

Unroll j
for (i=0; i<4; i++)
 for (j=0; j<8; j+=2)
 A[i][j] = B[j+1][i];
 A[i][j+1] = B[j+2][i];

Unroll-and-jam i
for (i= 0; i<4; i+=2)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];
 A[i+1][j] = B[j+1][i+1];

09/13/2012! 22!CS4230!

How does Unroll-and-Jam benefit locality?

• Temporal reuse of B in registers
• More if I loop is unrolled further

09/13/2012! CS4230! 23!

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i] + B[j+1][i+1];

Unroll-and-jam i and j loops
for (i=0; i<4; i+=2)
 for (j=0; j<8; j+=2) {
 A[i][j] = B[j+1][i] + B[j+1][i+1];
 A[i+1][j] = B[j+1][i+1] + B[j+1][i+2];
 A[i][j+1] = B[j+2][i] + B[j+2][i+1];
 A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];
}

Other advantages of Unroll-and-Jam

• Less loop control
• Independent computations for instruction-level

parallelism

09/13/2012! CS4230! 24!

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i] + B[j+1][i+1];

Unroll-and-jam i and j loops
for (i=0; i<4; i+=2)
 for (j=0; j<8; j+=2) {
 A[i][j] = B[j+1][i] + B[j+1][i+1];
 A[i+1][j] = B[j+1][i+1] + B[j+1][i+2];
 A[i][j+1] = B[j+2][i] + B[j+2][i+1];
 A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];
}

+
B

B
A

= +
B

B
A

= +
B

B
A

= +
B

B
A

=

9/13/12

7

How to determine safety of reordering
transformations

• Informally
- Must preserve relative order of dependence source and sink
- So, cannot reverse order

• Formally
- Tracking dependences

09/13/2012! CS4230! 25!

Safety of Permutation
• Cannot reverse any dependences
• Ok to permute?

09/13/2012! CS4230! 26!

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

 A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=1; j<6; j++)

A[i+1][j-1]=A[i][j]+B[j];

27!

Safety of Tiling

• Tiling = strip-mine and permutation
- Strip-mine does not reorder iterations
- Permutation must be legal
OR
-  strip size less than dependence
distance

09/13/2012! CS4230! 28!

Safety of Unroll-and-Jam

• Unroll-and-jam = tile + unroll
- Permutation must be legal
OR
-  unroll less than dependence distance

09/13/2012! CS4230!

9/13/12

8

Unroll-and-jam = tile + unroll?

09/13/2012! CS4230! 29!

Unroll i tile:
for (ii= 0; ii<4; ii+=2)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];
 A[i+1][j] = B[j+1][i+1];

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];

Tile i loop:
for (ii=0; ii<4; ii+=2)
 for (j=0; j<8; j++)
 for (i=ii; i<ii+2; i++)
 A[i][j] = B[j+1][i];

