CS4230 Parallel Programming

Lecture 8:
Dense Linear Algebra and
Locality Optimizations

Mary Hall
September 13, 2012

09/13/2012 CS4230

Administrative

+ T will be on travel again Tuesday, September 18

+ Axel will provide the algorithm description for
Singular Value Decompasition, which is our next
programming assignment

THE
UNIVERSITY
09/13/2012 CS4230 2 u OF UTAH

Today's Lecture

+ Dense Linear Algebra, from video
* Locality

- Data reuse vs. data locality
- Reordering transformations for locality

- Sources for this lecture:
- Notes on website

09/13/2012 CS4230

"THE
3 UN
Ui

IVERSITY
UTAH

Back to basics:

Why avoiding communication is important (1/2)
Algorithms have two costs:

1.Arithmetic (FLOPS)

2.Communication: moving data between
- levels of a memory hierarchy (sequential case)
- processors over a network (parallel case).

i1

CS267 Lecture 11 4

Slide source: Jim Demmel, CS267

9/13/12

Why avoiding com¥unicaﬂon is i%%or'ran‘r (2/2)
+ Running time of an algorithm is sum of 3 terms:

- # flops * time_per_flop
- # words moved / bandwidth

- # messages * latency } communication

» Time_per_flop << 1/bandwidth << latency
» Gaps growing exponentially with time

Annual improvements
Time_per_flop Bandwidth Latency
Network 26% 15%
59%
DRAM 23% 5%

+ Goal : organize linear algebra to avoid communication
« Between all memory hierarchy levels
* L1 <52 o PRAM getwork, etc
* Not just hiding communication (overlap with arith) (speedup < 2x)
« Arbitrary speedups possible

THE
Slide source: Jim Demmel, CS267 u 81; B/_IEARI_5|ITY

Review: Naive Sequential MatMul: C = C +

A*R
fori=1iton

fori=1ton

{read column j of B into fast memory, n3 reads}
fork=1ton

{write C(i,j) back to slow memory, n? writes}
n3 + O(n2) reads/writes altogether

Clii) clij) Ali:)
] 5] « B(.j)

THE
Slide source: Jim Demmel, CS267 CS267 Lecture 11 u UNIVERSITY

OF UTAH

Less Communication with Blocked Matrix Multiply

+ Blocked Matmul C = A-B explicitly refers to subblocks
of A, Band C of dimensions that depend on cache size

... Break Amn, B C™n into bxb blocks labeled A(ij), etc
... b chosen so 3 bxb blocks fit in cache
fori=1ton/b, forj=1ton/b, fork=1ton/b
C(i,j) = C(i.,j) + A(i,k)-B(k,j) . bx b matmul, 4b? reads/writes

» (n/b)? - 4b? = 4n’/b reads/writes altogether
» Minimized when 3b? = cache size = M, yielding O(n%/M"?) reads/writes

« What if we had more levels of memory? (L1, L2, cache etc)?
« Would need 3 more nested loops per level

THE
i . UNIVERSITY
Slide source: Jim Demmel, CS267 C8267 Lecture 11 u OF UTAH

Blocked vs Cache-Oblivious Algorithms

+ Blocked Matmul C = A-B explicitly refers to subblocks
of A, Band C of dimensions that depend on cache size

... Break A™n, Bmn C™n into bxb blocks labeled A(ij), etc
... b chosen so 3 bxb blocks fit in cache
fori=1ton/b, forj=1ton/b, fork=1ton/b
C(i,j) = C(i,j) + A(i,k)"B(k,j) . bx b matmul
. another level of memory would need 3 more loops

» Cache-oblivious Matmul C = A-B is independent of cache

Function C = RMM(A,B)
If Aand B are 1x1

... Rfor recursive

C=A'B
else ... Break A™n, B Cm™ninto (n/2)x(n/2) blocks labeled A(ij), etc
fori=1to2, for j=1t0o2, for k=1to2

. n/2 x n/2 matmul

THE
UUN[VERS[TY
OF UTAH

C(i.j) = C(i.j) + RMM(A(ik), B(k,j))

Slide source: Jim Demmel, CS267 CS267 Lecture 11

9/13/12

Communication Lower Bounds: Prior Work on Matmul

- Assume n3 algorithm (i.e. not Strassen-like)

+ Sequential case, with fast memory of size M

- Loi/yﬁr bound on #words moved to/from slow memory = Q (n3/
M*¢) [Hong, Kung, 81]

- Attained using blocked or cache-oblivious algorithms

* Parallel case on P processors:
* Let M be memory per processor; assume load balanced
* Lower bound on #words moved
=Q (nd/(p - M12)) [Irony, Tiskin, Toledo, 04]
« If M = 3n?/p (one copy of each matrix), then
lower bound = Q (n? /p'/2)
« Attained by SUMMA, Cannon’ s algorithm

THE
Slide source: Jim Demmel, CS267 CS267 Lecture 11 u UNIVERSITY

OF UTAH

New lower bound for all “direct” linear

L&IQ‘F"—D"%st" memory size per processor
= cache size (sequential case) or O(n2/p) (parallel case)
#flops = number of flops done per processor

#words_moved per processor = Q(#flops / M1/2)

#messages_sent per processor = Q (#flops / M%2)

+ Holds for
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

- Some whole programs (sequences of these operations, no
matter how they are interleaved, eg computing Ak)

- Dense and sparse matrices (where #flops <« n3)
- Sequential and parallel algorithms
- Some graph-theoretic algorithms (eg Floyd-Warshall)

* Proof later

THE
Slide source: Jim Demmel, CS267 CS267 Lecture 11 u UNIVERSITY

OF UTAH

New lower bound for all “direct” linear algebra

Let M = “fast” memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor
#words_moved per processor = Q(#flops / M1/2)
#messages_sent per processor = Q (#flops / M%2)

- Sequential case, dense n x n matrices, so O(n®) flops
- #words_moved = Q(n3/ M1/2)
- #messages_sent = Q(n3/ M3/2)

+ Parallel case, dense n x n matrices
- Load balanced, so O(h3/p) flops processor

- One copy of data, load balanced, so M = O(n?/p) per
processor

- #words_moved = Q(n2/ pl/2)
- #messages_sent = Q(p1/2)

- THE
Slid 2 Jim D |, CS267 CS267 Lect 1 uUN[VERSITY
ide source: Jim Demmel ecture ORI

Can we attain these lower bounds?

+ Do conventional dense algorithms as implemented in LAPACK and
ScaLAPACK attain these bounds?

- Mostly not
+ If not, are there other algorithms that do?
- Yes
* Goals for algorithms:
- Minimize #words_moved
- Minimize #messages_sent
- Need new data structures
- Minimize for multiple memory hierarchy levels
- Cache-oblivious algorithms would be simplest
- Fewest flops when matrix fits in fastest memory
- Cache-oblivious algorithms don’t always attain this
+ Attainable for nearly all dense linear algebra
- Just a few prototype implementations so far (class projects!)

-o@nbpa few sparse algorithms so far (eg Cholesky)
OF UTAH

C8267 Lecture 11

9/13/12

Data Dependence and Related Definitions

+ Definition: . . .
Two memory accesses are involved in a data defendence if they may
r‘effer‘ to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
saemenfs or two different dynamic executions of the same program
statement.

« Source:

+ "Optimizing Compilers for Modern Architectures: A Dependence-Based
Approach”; Allen and Kennedy, 2002, Ch. 2.

09/13/2012 CS4230

THE
13 UUN[VERSITY
OF UTAH

Fundamental Theorem of Dependence

* Theorem 2.2:

- Any reordering transformation that preserves
every dependence in a program preserves the
meaning of that program.

THE
14 09/13/2012 Cs4230 u UNIVERSITY
OF UTAH

In this course, we consider two kinds of reordering
transformations

+ Parallelization

- Computations that execute in parallel between
sKnchr‘oniza'rion points are potentially reordered. Is
that reordering safe? According to our definition, it is
safe if it preserves the dependences in the code.

* Locality optimizations

- Suppose we want to modify the order in which a
computation accesses memory so that it is more likely
to be in cache. This is also a reordering
transformation, and it is safe if it preserves the
dependences in the code.

* Reduction computations
- We have to relax this rule for reductions. It is safe to reorder

reductions for commutative and associative operations.

"THE
15 UUN[VERS[TY
OF UTAH

09/13/2012 CS4230

Targets of Memory Hierarchy Optimizations

* Reduce memory latency

- The latency of a memory access is the time (usually in cycles)
between a memory request and its completion

* Maximize memory bandwidth
- Bandwidth is the amount of useful data that can be retrieved
over a time interval
* Manage overhead

- Cost of performing optimization (e.g., copying) should be less
than anticipated gain

09/13/2012 CS4230

"THE
16 UUN[VERS[TY
OF UTAH

9/13/12

Reuse and Locality

+ Consider how data is accessed
- Data reuse:
- Same or nearby data used multiple times
-Intrinsic in computation
- Data locality:
- Data is reused and is present in "fast memory”
- Same data or same data transfer

« If a computation has reuse, what can we do to get
locality?

- Appropriate data placement and layout
- Code reordering transformations

09/13/2012

"THE
UNIVERSITY
©84230 v UOF UTAH

xploiting Reuse: Locality optimizations

* We will study a few loop transformations that
reorder memory accesses to improve locality.

- These transformations are also useful for
parallelization too (o be discussed later).
* Two key questions:
- Safety:
- Does the transformation preserve dependences?
- Profitability:
- Is the transformation likely to be profitable?

- Will the gain be greater than the overheads (if any) associated
with the Transformation?

THE
09/13/2012 CS4230 18 u UNIVERSITY
OF UTAH

Loop Transformations: Loop Permutation

Permute the order of the loops to modify the traversal order

1<3; d++) for (§=0; 3<6; j++)

for (i=
3

0;
for (3=0; 3<6; J++) for (i= 0; i<3; i++)

A[i] [J+1]1=A[i]1[31+BI[]]; Ali][J+11=A[i] [J]1+B[]];

new traversal order!

IVAVAVAVA
N\

j
NOTE: € multi-dimensional arrays are stored in row-major order, Fortran

in column major
"THE
19 UUN[VERS[TY
OF UTAH

09/13/2012 CS4230

Tiling (Blocking):
Another Loop Reordering Transformation

+ Blocking reorders loop iterations to bring iterations
that reuse data closer in time

+ Goal is to retain in cache/register/scratchpad (or

other constrained memory sfructure) between
reuse

|
NN R
> > > >
NN —
F—— > \ "
F>—— e
-

09/13/2012 CS4230

"THE
20 u UNIVERSITY
OF UTAH

9/13/12

Tiling Example

for (3 J<M; j++)

for (i=1; i<N; i++)

D[i] = D[i] +B[j,i]

Strip j=1; j<M; j++)
mine for (ii=1; ii<N; ii+=s)
for (i=ii; i<min(ii+s-1,N); i++)
D[i] = D[i] +BI[j,i]

for (ii=1l; ii<N; ii+=s)
for (j=1; j<M; j++)
for (i=ii; i<min (ii+s-1,N); i++)
D[i] = D[i] +B[j],i]

Permute

THE
UNIVERSITY
Csa230 OF UTAH

09/13/2012

Unroll _Unroll-and-Jam

* Unroll simply replicates the statements in a loop, with
the number of copies called the unroll factor

+ As long as the copies don't go past the iterations in
the original loop, it is always safe
- May require “cleanup” code
* Unroll-and- jam involves unrolling an outer loop and
ein

fusing ?o%e her the copies of t ner loop (not
always satfe)

* One of the most effective optimizations there is, but
there is a danger in unrolling Yoo much

09/13/2012 CS4230

How does Unroll-and-Jam benefit locality?

it
J {
i+1104] + E
3+11[4+1]
j+z2ii1] + E
3+2] [1+1]

[i103+11]

B
=B

=B
+1][3+1] B

[
[
[
[

* Temporal reuse of B in registers
* More if I loop is unrolled further

09/13/2012 CS4230 23

Other advantages of Unroll-and-Jam

[i103+11]
+1] [3+1

* Less loop control

+ Independent computations for instruction-level
parallelism

e . B . B __ B
B B B e
THE
09/13/2012 CS4230 24 u ‘C;I;I {YTTrSl[TY

9/13/12

How to determine safety of reordering
transfaormations

+ Informally
- Must preserve relative order of dependence source and sink
- So, cannot reverse order

* Formally
- Tracking dependences

09/13/2012 CS4230

THE
25 u UNIVERSITY
OF UTAH

Safety of Permutation

+ Cannot reverse any dependences
+ Ok to permute?

for (i= 0; i<3; i++)

for (i= 0; i<3; i++)
for (j=1; j<6; j++)
A[i+1][3-11=A[i][JI1+B[3];

for (j=0; j<6; j++)
A[i] [j+1]1=A[i] [J1+B[3];

THE
09/13/2012 CS4230 26 u UNIVERSITY
OF UTAH

Safety of Tiling

* Tiling = strip-mine and permutation
-Strip-mine does not reorder iterations
-Permutation must be legal

OR
- strip size less than dependence
distance
09/13/2012 CS4230 27

Safety of Unroll-and-Jam

-Unroll-and-jam = tile + unroll
-Permutation must be legal
OR

- unroll less than dependence distance

09/13/2012 CS4230

"THE
28 UUN[VERS[TY
OF UTAH

9/13/12

Unroll-and-jam = tile + unroll?

09/13/2012

ii+=2)
jt+)

1<ii+2; it++)

CS4230

:
OF UTAH

9/13/12

