
9/5/12

1

09/04/2012! CS4230!

CS4961 Parallel Programming  

Lecture 5:  
More OpenMP, 

Introduction to Data Parallel
Algorithms 

Mary Hall  
September 4, 2012 

Administrative
• Mailing list set up, everyone should be on it

-  You should have received a test mail last night to your umail
account. Let me know if you prefer a different account.

• TA: Axel Rivera, axel.rivera@utah.edu
 Office hours: Wednesday, Friday, 10-10:30AM in
 undergrad lounge

09/04/2012! CS4230!

Homework 2: Mapping to Architecture
Due before class, Thursday, September 6
Objective: Begin thinking about architecture mapping issues
Turn in electronically on the CADE machines using the handin program:
“handin cs4230 hw2 <probfile>”
•  Problem 1: (2.3 in text) [Locality]
•  Problem 2: (2.8 in text) [Caches and multithreading]
•  Problem 3: [Amdahl’s Law] A multiprocessor consists of 100 processors, each

capable of a peak execution rate of 20 Gflops. What is performance of the
system as measured in Gflops when 20% of the code is sequential and 80% is
parallelizable?

•  Problem 4: (2.16 in text) [Parallelization scaling]
•  Problem 5: [Buses and crossbars] Suppose you have a computation that uses

two vector inputs to compute a vector output, where each vector is stored in
consecutive memory locations. Each input and output location is unique, but
data is loaded/stored from cache in 4-word transfers. Suppose you have P
processors and N data elements, and execution time is a function of time L
for a load from memory and time C for the computation. Compare parallel
execution time for a shared memory architecture with a bus (Nehalem)
versus a full crossbar (Niagara) from Lecture 3, assuming a write back cache
that is larger than the data footprint.

08/30/2012! CS4230 ! 3!

Programming Assignment 1:
Due Friday, Sept. 14, 11PM MDT

To be done on water.eng.utah.edu (you all have accounts – passwords
available if your CS account doesn’t work)
1.  Write a program to calculate π in OpenMP for a problem size and

data set to be provided. Use a block data distribution.
2.  Write the same computation in Pthreads.
Report your results in a separate README file.

- What is the parallel speedup of your code? To compute parallel
speedup, you will need to time the execution of both the
sequential and parallel code, and report speedup
= Time(seq) / Time (parallel)

-  If your code does not speed up, you will need to adjust the
parallelism granularity, the amount of work each processor does
between synchronization points. You can do this by either
decreasing the number of threads or increasing the number of
iterations.

-  Report results for two different # of threads, holding
iterations fixed, and two different # of iterations holding
threads fixed. Also report lines of code for the two solutions.

Extra credit: Rewrite both codes using a cyclic distribution and
measure performance for same configurations.

09/04/2012! CS4230!

9/5/12

2

Programming Assignment 1, cont.
• A test harness is provided in pi-test-harness.c that

provides a sequential pi calculation, validation, speedup
timing and substantial instructions on what you need to do
to complete the assignment.

• Here are the key points:
-  You’ll need to write the parallel code, and the things needed to

support that. Read the top of the file, and search for “TODO”.
-  Compile w/ OpenMP: cc –o pi-openmp –O3 –xopenmp pi-openmp.c
-  Compile w/ Pthreads:

 cc –o pi-pthreads –O3 pi-pthreads.c –lpthread
-  Run OpenMP version: ./pi-openmp > openmp.out
-  Run Pthreads version: ./pi-pthreads > pthreads.out

• Note that editing on water is somewhat primitive – I’m
using vim. You may want to edit on a different CADE
machine.

09/04/2012! CS4230!

Estimating π

CS4230!09/04/2012!

Today’s Lecture

• Data Parallelism in OpenMP
-  Expressing Parallel Loops
-  Parallel Regions (SPMD)
- Scheduling Loops
- Synchronization

• Sources of material:
- Textbook
-  https://computing.llnl.gov/tutorials/openMP/

09/04/2012! CS4230!

OpenMP:
Prevailing Shared Memory Programming Approach

• Model for shared-memory parallel programming
• Portable across shared-memory architectures
• Scalable (on shared-memory platforms)
• Incremental parallelization

-  Parallelize individual computations in a program while leaving
the rest of the program sequential

• Compiler based
-  Compiler generates thread program and synchronization

• Extensions to existing programming languages
(Fortran, C and C++)

- mainly by directives
-  a few library routines

See http://www.openmp.org
09/06/2011! CS4961!

9/5/12

3

OpenMP Execution Model

09/04/2012! CS4230!

fork

join

OpenMP parallel region construct
• Block of code to be executed by multiple threads in

parallel
• Each thread executes the same code redundantly

(SPMD)
- Work within work-sharing constructs is distributed among

the threads in a team

• Example with C/C++ syntax
!#pragma omp parallel [clause [clause] ...] new-line
 structured-block

•  clause can include the following:
private (list)
shared (list)

09/04/2012! CS4230!

Programming Model – Data Sharing
•  Parallel programs often employ

two types of data
-  Shared data, visible to all

threads, similarly named
-  Private data, visible to a single

thread (often stack-allocated)

•  OpenMP:
•  shared variables are shared
•  private variables are private
•  Default is shared
•  Loop index is private

•  PThreads:
•  Global-scoped variables are

shared
•  Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

OpenMP Data Parallel Construct: Parallel Loop
• All pragmas begin: #pragma
• Compiler calculates loop bounds for each thread

directly from serial source (computation decomposition)
• Compiler also manages data partitioning of Res
• Synchronization also automatic (barrier)

09/04/2012! CS4230!

9/5/12

4

Limitations and Semantics
• Not all “element-wise” loops can be ||ized

 #pragma omp parallel for
 for (i=0; i < numPixels; i++) {}

-  Loop index: signed integer
- Termination Test: <,<=,>,=> with loop invariant int
-  Incr/Decr by loop invariant int; change each iteration
-  Count up for <,<=; count down for >,>=
-  Basic block body: no control in/out except at top

• Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

• What would happen if one thread were allowed to
terminate early?

09/04/2012! CS4230!

OpenMP implicit semantics (sum version 5)
• Implicit barrier at the end of each loop
• Without a directive, code executes sequentially

09/04/2012! CS4230!

OpenMP critical directive (sum version 3)
• Enclosed code

– executed by all threads, but

– restricted to only one thread at a time
#pragma omp critical [(name)] new-line

 structured-block

• A thread waits at the beginning of a critical region until no
other thread in the team is executing a critical region with
the same name.

• All unnamed critical directives map to the same
unspecified name.

09/04/2012! CS4230!

OpenMp Reductions
• OpenMP has reduce operation
sum = 0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i < 100; i++) {
sum += array[i];
}

• Reduce ops and init() values (C and C++):
+ 0 bitwise & ~0 logical & 1
- 0 bitwise | 0 logical | 0
* 1 bitwise ^ 0
 FORTRAN also supports min and max reductions

09/04/2012! CS4230!

9/5/12

5

The trapezoidal rule

CS4230!09/04/2012!

Serial algorithm

CS4230!09/04/2012!

CS4230!09/04/2012! CS4230!09/04/2012!

9/5/12

6

CS4230!09/04/2012!

Programming Model – Loop Scheduling
• schedule clause determines how loop iterations are

divided among the thread team
- static([chunk]) divides iterations statically between

threads
-  Each thread receives [chunk] iterations, rounding as

necessary to account for all iterations
- Default [chunk] is ceil(# iterations / # threads)

- dynamic([chunk]) allocates [chunk] iterations per
thread, allocating an additional [chunk] iterations when a
thread finishes

-  Forms a logical work queue, consisting of all loop iterations
- Default [chunk] is 1

- guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

09/04/2012! CS4230!

Loop scheduling

2 (2)

09/04/2012! CS4230!

More loop scheduling attributes
• RUNTIME The scheduling decision is deferred until

runtime by the environment variable
OMP_SCHEDULE. It is illegal to specify a chunk size
for this clause.

• AUTO The scheduling decision is delegated to the
compiler and/or runtime system.

• NO WAIT / nowait: If specified, then threads do
not synchronize at the end of the parallel loop.

• ORDERED: Specifies that the iterations of the loop
must be executed as they would be in a serial
program.

• COLLAPSE: Specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause (collapsed
order corresponds to original sequential order).

09/04/2012! CS4230!

9/5/12

7

Impact of Scheduling Decision
• Load balance

- Same work in each iteration?
-  Processors working at same speed?

• Scheduling overhead
- Static decisions are cheap because they require no run-time

coordination
- Dynamic decisions have overhead that is impacted by

complexity and frequency of decisions

• Data locality
-  Particularly within cache lines for small chunk sizes
- Also impacts data reuse on same processor

09/04/2012! CS4230!

A Few Words About Data Distribution
• Data distribution describes how global data is

partitioned across processors.
-  Recall the CTA model and the notion that a portion of the

global address space is physically co-located with each
processor

• This data partitioning is implicit in OpenMP and may
not match loop iteration scheduling

• Compiler will try to do the right thing with static
scheduling specifications

09/04/2012! CS4230!

Common Data Distributions
• Consider a 1-Dimensional array to solve the global sum

problem, 16 elements, 4 threads
CYCLIC (chunk = 1):
 for (i = 0; i<blocksize; i++)
 … in [i*blocksize + tid];

BLOCK (chunk = 4):
 for (i=tid*blocksize; i<(tid+1) *blocksize; i++)
 … in[i];

BLOCK-CYCLIC (chunk = 2):

CS4230!

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2

09/04/2012!

The Schedule Clause

• Default schedule:

• Cyclic schedule:

CS4230!09/04/2012!

9/5/12

8

OpenMP Synchronization
• Implicit barrier

- At beginning and end of parallel constructs
- At end of all other control constructs
-  Implicit synchronization can be removed with nowait

clause

• Explicit synchronization
- critical!
- atomic (single statement)!
- barrier

09/04/2012! CS4230!

Variation: OpenMP parallel and for directives
Syntax:

 #pragma omp for [clause [clause] ...] new-line

 for-loop

clause can be one of the following:
 shared (list)!

 private(list) !
 reduction(operator: list)
 schedule(type [, chunk])!
 nowait (C/C++: on #pragma omp for)

#pragma omp parallel private(f) {
 f=7;

#pragma omp for
 for (i=0; i<20; i++)
 a[i] = b[i] + f * (i+1);

} /* omp end parallel */

09/04/2012! CS4230!

OpenMP environment variables
OMP_NUM_THREADS!

  sets the number of threads to use during execution
 when dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of
threads to use

  For example,
 !setenv OMP_NUM_THREADS 16 [csh, tcsh]
 !export OMP_NUM_THREADS=16 [sh, ksh, bash]
OMP_SCHEDULE!

  applies only to do/for and parallel do/for directives that
have the schedule type RUNTIME!

  sets schedule type and chunk size for all such loops
  For example,
 !setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]
 !export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]!
09/04/2012! CS4230! 09/04/2012! CS4230!

Summary of Lecture
• OpenMP, data-parallel constructs only

- Task-parallel constructs later

• What’s good?
- Small changes are required to produce a parallel program from

sequential (parallel formulation)
- Avoid having to express low-level mapping details
-  Portable and scalable, correct on 1 processor

• What is missing?
- Not completely natural if want to write a parallel code from

scratch
- Not always possible to express certain common parallel

constructs
-  Locality management
-  Control of performance

