
8/30/12

1

08/30/2012! CS4230!

CS4961 Parallel Programming  

Lecture 4:  
Memory Systems and

Introduction to Threads  
(Pthreads and OpenMP) 

Mary Hall  
August 30, 2012 

1!

Homework 1: Parallel Programming Basics
Due before class, Thursday, August 30
Turn in electronically on the CADE machines using the handin
program: “handin cs4230 hw1 <probfile>”
•  Problem 1: (from today’s lecture) We can develop a model

for the performance behavior from the versions of parallel
sum in today’s lecture based on sequential execution time S,
number of threads T, parallelization overhead O (fixed for
all versions), and the cost B for the barrier or M for each
invocation of the mutex. Let N be the number of elements
in the list. For version 5, there is some additional work for
thread 0 that you should also model using the variables
above. (a) Using these variables, what is the execution time
of valid parallel versions 2, 3 and 5; (b) present a model of
when parallelization is profitable for version 3; (c) discuss
how varying T and N impact the relative profitability of
versions 3 and 5.

08/30/2012! CS4230! 2!

Homework 1: Parallel Programming Basics
•  Problem 2: (#1.3 in textbook): Try to write pseudo-code for

the tree-structured global sum illustrated in Figure 1.1.
Assume the number of cores is a power of two (1, 2, 4, 8, …).

 Hints: Use a variable divisor to determine whether a core
should send its sum or receive and add. The divisor
should start with the value 2 and be doubled after each
iteration. Also use a variable core_difference to
determine which core should be partnered with the current
core. It should start with the value 1 and also be doubled
after each iteration. For example, in the first iteration 0 %
divisor = 0 and 1 % divisor = 1, so 0 receives and
adds, while 1 sends. Also in the first iteration 0 +
core_difference = 1 and 1 – core_difference = 0,
so 0 and 1 are paired in the first iteration.

08/30/2012! CS4230! 3!

Homework 1, cont.
• Problem 3: What are your goals after this year and

how do you anticipate this class is going to help you
with that? Some possible answers, but please feel
free to add to them. Also, please write at least one
sentence of explanation.

- A job in the computing industry
- A job in some other industry that uses computing
- As preparation for graduate studies
- To satisfy intellectual curiosity about the future of the

computing field
- Other

08/30/2012! CS4230! 4!

8/30/12

2

Homework 2: Mapping to Architecture
Due before class, Thursday, September 6
Objective: Begin thinking about architecture mapping issues
Turn in electronically on the CADE machines using the handin program:
“handin cs4230 hw2 <probfile>”
•  Problem 1: (2.3 in text) [Locality]
•  Problem 2: (2.8 in text) [Caches and multithreading]
•  Problem 3: [Amdahl’s Law] A multiprocessor consists of 100 processors, each

capable of a peak execution rate of 20 Gflops. What is performance of the
system as measured in Gflops when 20% of the code is sequential and 80% is
parallelizable?

•  Problem 4: (2.16 in text) [Parallelization scaling]
•  Problem 5: [Buses and crossbars] Suppose you have a computation that uses

two vector inputs to compute a vector output, where each vector is stored in
consecutive memory locations. Each input and output location is unique, but
data is loaded/stored from cache in 4-word transfers. Suppose you have P
processors and N data elements, and execution time is a function of time L
for a load from memory and time C for the computation. Compare parallel
execution time for a shared memory architecture with a bus (Nehalem)
versus a full crossbar (Niagara) from Lecture 3, assuming a write back cache
that is larger than the data footprint.

08/30/2012! CS4230 ! 5!

Reading for Today
• Chapter 2.4-2.4.3 (pgs. 47-52)
2.4 Parallel Software
•  Caveats
•  Coordinating the processes/threads
•  Shared-memory

• Chapter 4.1-4.2 (pgs. 151-159)
4.0 Shared Memory Programming with Pthreads
•  Processes, Threads, and Pthreads
•  Hello, World in Pthreads

• Chapter 5.1 (pgs. 209-215)
5.0 Shared Memory Programming with OpenMP
•  Getting Started

08/30/2012! CS4230! 6!

Today’s Lecture
• Discussion of Memory Systems
• Review Shared Memory and Distributed Memory

Programming Models
• Brief Overview of POSIX Threads (Pthreads)
• Data Parallelism in OpenMP

-  Expressing Parallel Loops
-  Parallel Regions (SPMD)
- Scheduling Loops
- Synchronization

• Sources of material:
- Textbook
- Jim Demmel and Kathy Yelick, UCB
-  openmp.org

08/30/2012! CS4230! 7!

Shared Memory vs. Distributed Memory Programs
• Shared Memory Programming

- Start a single process and fork threads.
- Threads carry out work.
- Threads communicate through shared memory.
- Threads coordinate through synchronization (also through

shared memory).

• Distributed Memory Programming
- Start multiple processes on multiple systems.
-  Processes carry out work.
-  Processes communicate through message-passing.
-  Processes coordinate either through message-passing or

synchronization (generates messages).

08/30/2012! CS4230! 8!

8/30/12

3

Non-uniform Memory Access (NUMA) multicore system

CS4230!

Figure 2.6 A memory location a core is
directly connected to can be
accessed faster than a memory
location that must be accessed
through another chip.

08/30/2012! 9!

Cache coherence

• Programmers have no direct
control over caches
and when they get updated.

• However, they can organize
their computation to access
memory in a different order.

CS4230!

Figure 2.17

A shared memory system with two
cores and two caches

08/30/2012! 10!

Cache coherence

CS4230!

x = 2; /* shared variable */

y0 privately owned by Core 0
y1 and z1 privately owned by Core 1

y0 eventually ends up = 2
y1 eventually ends up = 6
z1 = ???

08/30/2012! 11!

Snooping Cache Coherence

• The cores share a bus.
• Any signal transmitted on the bus can be “seen” by all

cores connected to the bus.
• When core 0 updates the copy of x stored in its

cache it also broadcasts this information across the
bus.

• If core 1 is “snooping” the bus, it will see that x has
been updated and it can mark its copy of x as invalid.

CS4230!08/30/2012! 12!

8/30/12

4

Directory Based Cache Coherence
• Uses a data structure called a directory that stores

the status of each cache line.

• When a variable is updated, the directory is
consulted, and the cache controllers of the cores
that have that variable’s cache line in their caches
are invalidated.

CS4230!08/30/2012! 13!

False Sharing
• A cache line contains more than one machine word.
• When multiple processors access the same cache line,

it may look like a potential race condition, even if
they access different elements.

• Can cause coherence traffic.

08/30/2012! CS4230! 14!

Shared memory interconnects

• Bus interconnect
- A collection of parallel communication wires together with

some hardware that controls access to the bus.
-  Communication wires are shared by the devices that are

connected to it.
- As the number of devices connected to the bus increases,

contention for use of the bus increases, and performance
decreases.

CS4230!08/30/2012! 15!

Shared memory interconnects
• Switched interconnect

- Uses switches to control the routing of data among the
connected devices.

-  Crossbar –
- Allows simultaneous communication among different devices.
-  Faster than buses.
- But the cost of the switches and links is relatively high.
-  Crossbars grow as n2 making them impractical for large n

CS4230!08/30/2012! 16!

8/30/12

5

CS4230!

Figure 2.7

(a)
A crossbar switch connecting 4
processors (Pi) and 4 memory
modules (Mj)

(b)
Configuration of internal switches
in a crossbar

(c) Simultaneous memory
accesses by the processors

08/30/2012! 17!

SunFire E25K
• 4 UltraSparcs
• Dotted lines
represent
snooping

• 18 boards
connected with
crossbars

- Basically the limit
- Increasing

processors per
node will, on
average, increase
congestion

08/30/2012! CS4230! 18!

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Shared Memory
• Dynamic threads

- Master thread waits for work, forks new threads, and when
threads are done, they terminate

-  Efficient use of resources, but thread creation and
termination is time consuming.

• Static threads
-  Pool of threads created and are allocated work, but do not

terminate until cleanup.
-  Better performance, but potential waste of system resources.

CS4230!08/30/2012! 19!

Thread Safety
• Chapter 2 mentions thread safety of shared-memory

parallel functions or libraries.
- A function or library is thread-safe if it operates

“correctly” when called by multiple, simultaneously executing
threads.

- Since multiple threads communicate and coordinate through
shared memory, a thread-safe code modifies the state of
shared memory using appropriate synchronization.

- Some features of sequential code that may not be thread
safe?

08/30/2012! CS4230! 20!

8/30/12

6

Programming with Threads
Several thread libraries, more being created
• PThreads is the POSIX Standard

-  Relatively low level
- Programmer expresses thread management and

coordination
- Programmer decomposes parallelism and manages schedule

-  Portable but possibly slow
- Most widely used for systems-oriented code, and also used

for some kinds of application code

• OpenMP is newer standard
- Higher-level support for scientific programming on shared

memory architectures
- Programmer identifies parallelism and data properties, and

guides scheduling at a high level
- System decomposes parallelism and manages schedule

- Arose from a variety of architecture-specific pragmas
08/30/2012! CS4230! 21!

Overview of POSIX Threads (Pthreads)
• POSIX: Portable Operating System Interface for

UNIX
-  Interface to Operating System utilities

• PThreads: The POSIX threading interface
- System calls to create and synchronize threads
- Should be relatively uniform across UNIX-like OS

platforms

• PThreads contain support for
-  Creating parallelism
- Synchronizing
- No explicit support for communication, because shared

memory is implicit; a pointer to shared data is passed to a
thread

08/30/2012! CS4230!
Slide source: Jim Demmel and Kathy Yelick

22!

Forking Pthreads

•  thread_id is the thread id or handle (used to halt, etc.)
•  thread_attribute various attributes

-  standard default values obtained by passing a NULL pointer

•  thread_fun the function to be run (takes and returns void*)
•  fun_arg an argument can be passed to thread_fun when it starts
•  errorcode will be set to nonzero if the create operation fails

Signature:
 int pthread_create(pthread_t *,
 const pthread_attr_t *,
 void * (*)(void *),
 void *);
Example call:
 errcode = pthread_create(&thread_id,
 &thread_attribute,
 &thread_fun, &fun_arg);

08/30/2012! CS4230!

Slide source: Jim Demmel and Kathy Yelick
23!

Forking Pthreads, cont.
• The effect of pthread_create

- Master thread actually causes the operating system to
create a new thread

-  Each thread executes a specific function, thread_fun
- The same thread function is executed by all threads that are

created, representing the thread’s computation decomposition
-  For the program to perform different work in different

threads, the arguments passed at thread creation
distinguish the thread’s “id” and any other unique features
of the thread.

08/30/2012! CS4230! 24!

8/30/12

7

Simple Threading Example

int main() {
 pthread_t threads[16];
 int tn;
 for(tn=0; tn<16; tn++) {
 pthread_create(&threads[tn], NULL, ParFun, NULL);
 }
 for(tn=0; tn<16 ; tn++) {
 pthread_join(threads[tn], NULL);
 }
 return 0;
}

Compile using gcc … –lpthread

This code creates 16 threads that execute the function “ParFun”.

Note that thread creation is costly, so it is important that ParFun do a lot of work
in parallel to amortize this cost.

08/30/2012! CS4230!

Slide source: Jim Demmel and Kathy Yelick
25!

Shared Data and Threads
• Variables declared outside of main are shared
• Object allocated on the heap may be shared (if

pointer is passed)
• Variables on the stack are private: passing pointer to

these around to other threads can cause problems

• Shared data often a result of creating a large
“thread data” struct

-  Passed into all threads as argument
- Simple example:

 char *message = "Hello World!\n";
 pthread_create(&thread1,
 NULL,
 (void*)&print_fun,
 (void*) message);

08/30/2012! CS4230!

Slide source: Jim Demmel and Kathy Yelick
26!

“Hello World” in Pthreads
• Some preliminaries

- Number of threads to create (threadcount) is set at
runtime and read from command line

-  Each thread prints “Hello from thread <X> of <threadcount>”

• Also need another function
- int pthread_join(pthread_t *, void **value_ptr)
-  From Unix specification: “suspends execution of the calling

thread until the target thread terminates, unless the target
thread has already terminated.”

- The second parameter allows the exiting thread to pass
information back to the calling thread (often NULL).

-  Returns nonzero if there is an error

08/30/2012! CS4230! 27!

Hello World! (1)

CS4230!

declares the various Pthreads
functions, constants, types, etc.

08/30/2012! 28!

8/30/12

8

Hello World! (2)

CS4230!08/30/2012! 29!

Hello World! (3)

CS4230!08/30/2012! 30!

Explicit Synchronization:
Creating and Initializing a Barrier

• To (dynamically) initialize a barrier, use code similar
to this (which sets the number of threads to 3):
pthread_barrier_t b;
pthread_barrier_init(&b,NULL,3);

• The second argument specifies an object attribute;
using NULL yields the default attributes.

• To wait at a barrier, a process executes:
pthread_barrier_wait(&b);

• This barrier could have been statically initialized by
assigning an initial value created using the macro
PTHREAD_BARRIER_INITIALIZER(3).

08/30/2012! CS4230!

Slide source: Jim Demmel and Kathy Yelick
31!

Mutexes (aka Locks) in Pthreads
• To create a mutex:
 #include <pthread.h>

 pthread_mutex_t amutex = PTHREAD_MUTEX_INITIALIZER;

 pthread_mutex_init(&amutex, NULL);

• To use it:
 int pthread_mutex_lock(amutex);

 int pthread_mutex_unlock(amutex);

• To deallocate a mutex
 int pthread_mutex_destroy(pthread_mutex_t *mutex);

• Multiple mutexes may be held, but can lead to deadlock:
 thread1 thread2
 lock(a) lock(b)
 lock(b) lock(a)

08/30/2012! CS4230!
Slide source: Jim Demmel and Kathy Yelick

32!

8/30/12

9

Additional Pthreads synchronization
described in textbook

• Semaphores
• Condition variables

• More discussion to come later in the semester, but
these details are not needed to get started
programming

08/30/2012! CS4230! 33!

Summary of Programming with Threads
• Pthreads are based on OS features

-  Can be used from multiple languages (need appropriate header)
-  Familiar language for most programmers
- Ability to shared data is convenient

• Pitfalls
- Data races are difficult to find because they can be

intermittent
- Deadlocks are usually easier, but can also be intermittent

• OpenMP is commonly used today as a simpler
alternative, but it is more restrictive

- OpenMP can parallelize many serial programs with relatively
few annotations that specify parallelism and independence

08/30/2012! CS4230! 34!

OpenMP:
Prevailing Shared Memory Programming Approach

• Model for shared-memory parallel programming
• Portable across shared-memory architectures
• Scalable (on shared-memory platforms)
• Incremental parallelization

-  Parallelize individual computations in a program while leaving
the rest of the program sequential

• Compiler based
-  Compiler generates thread program and synchronization

• Extensions to existing programming languages
(Fortran, C and C++)

- mainly by directives
-  a few library routines

See http://www.openmp.org
08/30/2012! CS4230! 35!

A Programmer’s View of OpenMP
• OpenMP is a portable, threaded, shared-memory

programming specification with “light” syntax
-  Exact behavior depends on OpenMP implementation!
-  Requires compiler support (C/C++ or Fortran)

• OpenMP will:
- Allow a programmer to separate a program into serial regions

and parallel regions, rather than concurrently-executing
threads.

- Hide stack management
-  Provide synchronization constructs

• OpenMP will not:
-  Parallelize automatically
- Guarantee speedup
-  Provide freedom from data races

08/30/2012! CS4230! 36!

8/30/12

10

OpenMP Execution Model

•  Fork-join model of parallel execution

•  Begin execution as a single process (master thread)

•  Start of a parallel construct:
-  Master thread creates team of threads (worker threads)

•  Completion of a parallel construct:
-  Threads in the team synchronize -- implicit barrier

•  Only master thread continues execution

•  Implementation optimization:
-  Worker threads spin waiting on next fork

fork

join

08/30/2012! CS4230! 37!

OpenMP uses Pragmas

• Pragmas are special preprocessor instructions.
• Typically added to a system to allow behaviors that

aren’t part of the basic C specification.
• Compilers that don’t support the pragmas ignore them.
• The interpretation of OpenMP pragmas

- They modify the statement immediately following the pragma
- This could be a compound statement such as a loop

#pragma omp …

08/30/2012! CS4230! 38!

Programming Model – Data Sharing
•  Parallel programs often employ

two types of data
-  Shared data, visible to all

threads, similarly named
-  Private data, visible to a single

thread (often stack-allocated)

•  OpenMP:
•  shared variables are shared
•  private variables are private
•  Default is shared
•  Loop index is private

•  PThreads:
•  Global-scoped variables are

shared
•  Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

OpenMP directive format C
(also Fortran and C++ bindings)

• Pragmas, format
!#pragma omp directive_name [clause [clause] ...] new-
line

•  Conditional compilation

!#ifdef _OPENMP!
block,
e.g., printf(“%d avail.processors\n”,omp_get_num_procs());!

!#endif

•  Case sensitive

•  Include file for library routines

!#ifdef _OPENMP!

!#include <omp.h>!

!#endif!

08/30/2012! CS4230! 40!

8/30/12

11

OpenMP runtime library, Query Functions
omp_get_num_threads:

Returns the number of threads currently in the team executing the
parallel region from which it is called

int omp_get_num_threads(void);!

omp_get_thread_num:

Returns the thread number, within the team, that lies between 0 and
omp_get_num_threads()-1, inclusive. The master thread of the
team is thread 0!

int omp_get_thread_num(void);!

08/30/2012! CS4230! 41!

OpenMP parallel region construct
• Block of code to be executed by multiple threads in

parallel
• Each thread executes the same code redundantly

(SPMD)
- Work within work-sharing constructs is distributed among

the threads in a team

• Example with C/C++ syntax
!#pragma omp parallel [clause [clause] ...] new-line
 structured-block

•  clause can include the following:
private (list)
shared (list)

08/30/2012! CS4230! 42!

Hello World in OpenMP
• Let’s start with a parallel region construct
• Things to think about

- As before, number of threads is read from command line
-  Code should be correct without the pragmas and library

calls

• Differences from Pthreads
- More of the required code is managed by the compiler and

runtime (so shorter)
- There is an implicit thread identifier

08/30/2012! CS4230!

gcc −fopenmp …

43! CS4230!08/30/2012! 44!

8/30/12

12

In case the compiler doesn’t support OpenMP

CS4230!

include <omp.h>

#ifdef _OPENMP
include <omp.h>
#endif

08/30/2012! 45!

In case the compiler doesn’t support OpenMP

CS4230!

ifdef _OPENMP
 int my_rank = omp_get_thread_num ();
 int thread_count = omp_get_num_threads ();
e l s e
 int my_rank = 0;
 int thread_count = 1;
endif

08/30/2012! 46!

OpenMP Data Parallel Construct: Parallel Loop
• All pragmas begin: #pragma
• Compiler calculates loop bounds for each thread

directly from serial source (computation decomposition)
• Compiler also manages data partitioning of Res
• Synchronization also automatic (barrier)

08/30/2012! CS4230! 47!

Limitations and Semantics
• Not all “element-wise” loops can be ||ized

 #pragma omp parallel for
 for (i=0; i < numPixels; i++) {}

-  Loop index: signed integer
- Termination Test: <,<=,>,=> with loop invariant int
-  Incr/Decr by loop invariant int; change each iteration
-  Count up for <,<=; count down for >,>=
-  Basic block body: no control in/out except at top

• Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

08/30/2012! CS4230! 48!

8/30/12

13

OpenMP Synchronization
• Implicit barrier

- At beginning and end of parallel constructs
- At end of all other control constructs
-  Implicit synchronization can be removed with nowait

clause

• Explicit synchronization
- critical!
- atomic

08/30/2012! CS4230! 49! 08/30/2012! CS4230!

Summary of Lecture
• OpenMP, data-parallel constructs only

- Task-parallel constructs later

• What’s good?
- Small changes are required to produce a parallel program from

sequential (parallel formulation)
- Avoid having to express low-level mapping details
-  Portable and scalable, correct on 1 processor

• What is missing?
- Not completely natural if want to write a parallel code from

scratch
- Not always possible to express certain common parallel

constructs
-  Locality management
-  Control of performance

50!

