CS4961 Parallel Programming

Lecture 4-:
Memory Systems and
Introduction to Threads
(Pthreads and OpenMP)

Mary Hall
August 30, 2012

08/30/2012 Cs4230 1

Homework 1: Parallel Programming Basics
Due before class, Thursday, August 30

Turn in electronically on the CADE machines using the handin
program: “handin cs4230 hwl <probfile>”

* Problem 1: (from foday's lecture) We can develop a model
for the performance behavior from the versions of parallel
sum in today’s lecture based on sequential execution time S,
number of threads T, parallelization overhead O (fixed for
all versions), and the cost B for the barrier or M for each
invocation of the mutex. Let N be the number of elements
in the list. For version 5, there is some additional work for
thread O that you should also model using the variables
above, (a) Using these variables, what is"the execution time
of valid parallel'versions 2, 3 and 5; (b) present a model of
when parallelization is profitable for version 3; gc.?.dcscuss
how varying T and N impact the relative profitability of
versions 3-and 5.

THE
CS4230 2 u UNIVERSITY

08/30/2012 OF UTAH

Homework 1: Parallel Programming Basics

+ Problem 2: (#1.3 in textbook): Try to write pseudo-code for
the tree-structured global sum illustrated in Figure 1.1.
Assume the number of cores is a power of two ?1 2,4,8,.)

Hints: Use a variable divisor to determine whether a core
should send its sum or receive and add. The divisor
should start with the value 2 and be doubled after each
iteration. Also use a variable core difference to
determine which core should be partnered with the current
core. It should start with the value 1 and also be doubled
after each iteration. For example, in the first iteration 0 %
divisor = 0 and1 % divisor = 1,so 0 receives and
adds, while 1 sends. Also in the first iteration 0 +

core difference = 1 and1l - core difference = 0,
so 0 and 1 are paired in the first iteration.

THE
3 u UNIVERSITY
OF UTAH

08/30/2012 CS4230

Homework 1, cont.

* Problem 3: What are your goals after this year and
how do you anticipate this Class is g,;)mg to hel;f) you
with that? Some possible answers, butplease feel
free to add to them. Also, please write at least one
sentence of explanation.

- A job in the computing industry
- A job in some other industry that uses computing
- As preparation for graduate studies

- To satisfy intellectual curiosity about the future of the
computing field

- Other

THE
4 u UNIVERSITY
OF UTAH

08/30/2012 CS4230

8/30/12

Homework 2: Mapping to Architecture

Due before class, Thursday, September 6
Objective: Begin thinking about architecture mapping issues

Turn in electronically on the CADE machines using the handin program:
“handin cs4230 hw2 <probfile>"

+ Problem 1: (2.3 in text) [Locality]
« Problem 2: (2.8 in text) [Caches and multithreading]

+ Problem 3: [Amdahl's Law] A multiprocessor consists of 100 processors, each
capable of a peak execution rate of 20 Gflops. What is performance of the
system as measured in Gflops when 20% of the code is sequential and 80% is
parallelizable?

« Problem 4: (2.16 in text) [Parallelization scaling]

+ Problem 5: [Buses and crossbars] Suppose you have a computation that uses
two vector inputs to compute a vector output, where each vector is stored in
consecutive memory locations. Each inputand output location is unique, but
data is loaded/stored from cache in 4-word transfers. Suppose you have P
?rocessors and N data elements, and execution time is a function of time L

or a load from memory and time C for the computation. Compare parallel
execution time for a shared memory architecture with a bus (Nehalem)
versus a full crossbar (Niagara) from Lecture 3, assuming a write back cache

that is larger than the data footprint.
UNIVERSITY
I
08/30/2012 Cs4230 5 u 3

Reading for Today
+ Chapter 2.4-2.4.3 (pgs. 47-52)

2.4 Parallel Software

+ Caveats

+ Coordinating the processes/threads
+ Shared-memory

* Chapter 4.1-4.2 (pgs. 151-159)

4.0 Shared Memory Programming with Pthreads
+ Processes, Threads, and Pthreads

+ Hello, World in Pthreads

+ Chapter 5.1 (pgs. 209-215)

5.0 Shared Memory Programming with OpenMP
+ Getting Started

08/30/2012 CS4230

THE
6 u UNIVERSITY
OF UTAH

Today's Lecture
+ Discussion of Memory Systems

* Review Shared Memory and Distributed Memory
Programming Models

+ Brief Overview of POSIX Threads (Pthreads)

+ Data Parallelism in OpenMP
- Expressing Parallel Loops
- Parallel Regions (SPMD)
- Scheduling Loops
- Synchronization

+ Sources of material:

- Textbook
- Jim Demmel and Kathy Yelick, UCB
- openmp.org
08/30/2012 CS4230 7

Shared Memory vs. Distributed Memory Programs

+ Shared Memory Programming
- Start a single process and fork threads.
- Threads carry out work.
- Threads communicate through shared memory.
- Threads coordinate through synchronization (also through
shared memory).
* Distributed Memory Programming
- Start multiple processes on multiple systems.
- Processes carry out work.
- Processes communicate through message-passing.

- Processes coordinate either through message-passing or
synchronization (generates messages).

08/30/2012 CS4230

THE
8 u UNIVERSITY
OF UTAH

8/30/12

Non-uniform Memory Access (NUMA) multicore system

Chip 1 Chip 2

| Core 1 | | Core 2 ‘ S | Core 1 | | Core 2 |

|]

I Interconnect ‘ | Interconnect |

| l

‘ Memory ‘ ‘ Memory ‘

A memory location a core is

Cache coherence

+ Programmers have no direct [coreo | || [coret]
control over caches
and when they get updated. $ i
| Cache 0 | | Cache 1 |

* However, they can organize
their computation to access I I

memory in a different order.

| Interconnect |

[

; Figure 2.17
directly connected to can be Figure 2.6 ¢ | X | z | | v l |
accessed faster than a memory A shared memory system with two
location that must be accessed cores and two caches | yo | | | z1 ‘ |
through another chip.
Snooping Cache Coherence
Cache coherence ping
+ The cores share a bus.
y0 privately owned by Core 0 A A I+ itted the b be * " by all
1 and 21 orivatel d by Core 1 + Any signal transmitted on the bus can be “seen” by a
ylandzi privately owned by Lore cores connected to the bus.
x = 2; /* shared variable */ * When core 0 updates the copy of x stored in its
cache it also broadcasts this information across the
Time Core 0 Core 1 bus.
0 [lvo-=x yl=3%; « If core 1is "snooping” the bus, it will see that x has
1 [x=7 Statement(s) not involving x been updated and it can mark its copy of x as invalid.
2 Statement(s) not involving x | z1 = 4*x;

y0 eventually ends up = 2
y1 eventually ends up =6
z1=7???

0p3aami12

"THE
1 UUN[VERS[TY
OF UTAH

Qp3aami12

"THE
12 UUN[VERS[TY
OF UTAH

8/30/12

Directory Based Cache Coherence

* Uses a data structure called a directory that stores
the status of each cache line.

* When a variable is updated, the dir‘ec‘rorn is
consulted, and the cache controllers of the cores
that have that variable's cache line in their caches
are invalidated.

0B308M12

THE
13 UUN[VERSITY
OF UTAH

False Sharing

+ A cache line contains more than one machine word.

* When mulTiFIe processors access the same cache line,
it may look like a potential race condition, even if
they access different elements.

+ Can cause coherence traffic.

08/30/2012 CS4230

"THE
14 UUN[VERSITY
OF UTAH

Shared memory interconnects

+ Bus interconnect
- A collection of parallel communication wires together with
some hardware that controls access to the bus.
- Communication wires are shared by the devices that are
connected to it.

- As the number of devices connected to the bus increases,
contention for use of the bus increases, and performance
decreases.

0p3aami12

"THE
15 UUN[VERS[TY
OF UTAH

Shared memory interconnects

+ Switched interconnect

- Uses switches to control the routing of data among the
connected devices.

- Crossbar -
- Allows simultaneous communication among different devices.
- Faster than buses.
- But the cost of the switches and links is relatively high.
- Crossbars grow as n? making them impractical for large n

Qp3aami12

"THE
16 UUN[VERS[TY
OF UTAH

8/30/12

Figure 2.7

(a)

A crossbar switch connecting 4
processors (Pi) and 4 memory
modules (Mj)

(b)

Configuration of internal switches

in a crossbar

(c) Simultaneous memory
accesses by the processors

0B308M12

"THE
17 UUN[VERSITY
OF UTAH

SunFire E25K

*4 UltraSparcs

+ Dotted lines
represent
snooping

18 boards
connected with
crossbars

- Basically the limit

- Increasing
processors per
node will, on
average, increase
congestion

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

08/30/2012

18x18
Crossbar
Switch

Ll

CS4230

THE
18 UUN[VERSITY
OF UTAH

Shared Memory

+ Dynamic threads

- Master thread waits for work, forks new threads, and when
threads are done, they terminate

- Efficient use of resources, but thread creation and
termination is time consuming.

+ Static threads

- Pool of threads created and are allocated work, but do not

terminate until cleanup.

- Better performance, but potential waste of system resources.

08/30/2012 CS4230

"THE
19 UUN[VERS[TY
OF UTAH

Thread Safety

+ Chapter 2 mentions thread safety of shared-memory
parallel functions or libraries.

is thread-safe if it operates
“correctly” when called by multiple, simultaneously executing

- A function or libra

threads.

- Since multiple threads communicate and coordinate through
shared memory, a thread-safe code modifies the state o
shared memory using appropriate synchronization.

- Some features of sequential code that may not be thread

safe?

08/30/2012

CS4230

"THE
20 UUN[VERS[TY
OF UTAH

8/30/12

. . <
Several thread ilbmr‘ies, more being created

* PThreads is the POSIX Standard
- Relatively low level

- Programmer expresses thread management and
coordination

- Programmer decomposes parallelism and manages schedule
- Portable but possibly slow
- Most widely used for systems-oriented code, and also used
for some kinds of application code
+ OpenMP is newer standard

- Higher-level support for scientific programming on shared
memory architectures

- Programmer identifies parallelism and data properties, and
guides scheduling at a high level

- System decomposes parallelism and manages schedule
- Arose from a variety of architecture-specific pragmas

08/30/2012 CS4230 21

Overview of POSIX Threads (Pthreads)
+ POSIX: Portable Operating System Interface for
UNIX

- Interface to Operating System utilities
+ PThreads: The POSIX threading interface

- System calls to create and synchronize threads

- Should be relatively uniform across UNIX-like OS
platforms

* PThreads contain support for
- Creating parallelism
- Synchronizing

- No explicit support for communication, because shared
memory is implicit; a pointer to shared data is passed to a

thread
Slide source: Jim Demmel and Kathy Yelick "THE
UNIVERSITY
08/30/2012 CS4230 22 UOF UTAH

Forking Pthreads

Signature:
int pthread create(pthread t *,
const pthread_attr_t *,
void * (*) (void *),
void ¥*);

Example call:
errcode = pthread create(&thread_id,
&thread attribute,
&thread_fun, &fun_arg);

+ thread_id is the thread id or handle (used to halt, etc.)

+ thread_attribute various attributes
- standard default values obtained by passing a NULL pointer

+ thread_fun the function to be run (takes and returns void*)
- fun_arg an argument can be passed to thread_fun when it starts
+ errorcode will be set to nonzero if the create operation fails

Slide source: Jim Demmel and Kathy Yelick
08/30/2012 CS4230

"THE
23 UUN[VERS[TY
OF UTAH

Forking Pthreads, cont.

* The effect of pthread_create

- Master thread actually causes the operating system to
create a new thread

- Each thread executes a specific function, thread_fun
- The same thread function is executed by all threads that are
created, representing the thread's computation decomposition
- For the program to perform different work in different
threads, the arguments passed at thread creation

distinguish the thread's "id" and any other unique features
of the thread.

08/30/2012 CS4230

"THE
24 UUN[VERS[TY
OF UTAH

8/30/12

Simple Threading Example

int main() {

pthread t threads[16];

int tn;

for (tn=0; tn<1l6; tn++) {
pthread create(&threads[tn], NULL, ParFun, NULL);

}

for (tn=0; tn<l6 ; tn++) {
pthread join(threads[tn], NULL);

}

return 0;

}

‘ Compile using gcc ... —Ipthread ‘

This code creates 16 threads that execute the function “ParFun”.

Note that thread creation is costly, so it is important that ParFun do a lot of work
in parallel to amortize this cost.

Slide source: Jim Demmel and Kathy Yelick
08/30/2012 CS4230

THE
25 u UNIVERSITY
OF UTAH

Shared Data and Threads
+ Variables declared outside of main are shared

- Object allocated on the heap may be shared (if
pointer is passed)

+ Variables on the stack are private: passing pointer to
these around to other threads can cause problems

+ Shared data often a result of creating a large
“thread data" struct

- Passed into all threads as argument

- Simple example:
char *message = "Hello World!\n";
pthread create(&threadl,
(voié*) &print fun,
(void*) message) ;

Slide source: Jim Demmel and Kathy Yelick

THE
UNIVERSITY
08/30/2012 CS4230 26 UOF UTAH

“"Hello World” in Pthreads

+ Some preliminaries

- Number of threads to create (threadcount) is set at
runtime and read from command line

- Each thread prints "Hello from thread <X> of <threadcount>"

+ Also need another function
-int pthread join(pthread t *, void **value ptr)

- From Unix specification: "suspends execution of the calling
thread until the target thread terminates, unless the target
thread has already ferminated.”

- The second parameter allows the exiting thread to pass
information back to the calling thread (often NULL;J.

- Returns nonzero if there is an error

08/30/2012 CS4230

"THE
27 UUN[VERS[TY
OF UTAH

Hello World! (1)

#include <stdio.h> declares the various Pthreads
#include <stdlib.h> functions, constants, types, etc.
#include <pthread.h>
/% Global variable: accessible to all threads %/
int thread_count;
void *Hello(void* rank): /% Thread function x/
int main(int argc, charx argv([]) {
long thread; /+ Use long in case of a 64—bit system =/

pthread_t* thread_handles;

/% Get number of threads from command line x*/
thread_count = strtol(argv[l], NULL, 10);

thread_handles = malloc (thread_counts*sizeof(pthread_t));

Qp3aami12

"THE
28 UUN[VERS[TY
OF UTAH

8/30/12

Hello World! (2)

for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL,
Hello, (void#) thread):

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

free(thread_handles);
return 0
} /x main x/

0B308M12

THE
29 u UNIVERSITY
OF UTAH

Hello World! (3)

void #Hello(voids rank) |
long my_rank = (long) rank: /+ Use long in case of 64—bit system =/

printf("Hello from thread $1d of %d\n", my_rank, thread_count);

return NULL:
} /+ Hello */

0H308M12

THE
30 u UNIVERSITY
OF UTAH

Explicit Synchronization:
Creating and Initializing a Barrier

* To (dynamically) initialize a barrier, use code similar
to this (which sets the nhumber of threads to 3):

pthread barrier_t b;
pthread barrier_init(&b,NULL,3);

* The second argument specifies an object attribute;
using NULL yields the default attributes.

+ To wait at a barrier, a process executes:
pthread_barrier wait(&b);

* This barrier could have been statically initialized by
assigning an initial value created using the macro
PTHREAD BARRIER INITIALIZER (3).

Slide source: Jim Demmel and Kathy Yelick
08/30/2012 CS4230

"THE
31 UUN[VERS[TY
OF UTAH

Mutexes (aka Locks) in Pthreads

* To create a mutex:
#include <pthread.h>
pthread mutex t amutex = PTHREAD MUTEX INITIALIZER;

pthread mutex init(&amutex, NULL);
* To use it:
int pthread mutex_ lock (amutex) ;
int pthread mutex_unlock (amutex) ;
* To deallocate a mutex
int pthread mutex_destroy(pthread mutex t *mutex);

* Multiple mutexes may be held, but can lead to deadlock:

threadl thread2
lock (a) lock (b)
lock (b) lock (a)
Slide source: Jim Demmel and Kathy Yelick THE
UNIVERSITY
08/30/2012 €84230 %

8/30/12

Additional Pthreads synchronization
described in textbook

+ Semaphores

« Condition variables

+ More discussion to come later in the semester, but
these details are not needed to get started
programming

08/30/2012 CS4230

"THE
33 u UNIVERSITY
OF UTAH

ing with Threads

* Pthreads are based on OS features
- Can be used from multiple languages (heed appropriate header)
- Familiar language for most programmers
- Ability to shared data is convenient

« Pitfalls

- Data races are difficult o find because they can be
intermittent

- Deadlocks are usually easier, but can also be intermittent

Summary of Progra

+ OpenMP is commonly used today as a simpler
alternative, but it is more restrictive

- OpenMP can parallelize many serial programs with relatively
few annotations that specify parallelism and independence

08/30/2012 CS4230

"THE
34 u UNIVERSITY
OF UTAH

OpenMP:
Prevailing Shared Memory Programming Approach

* Model for shared-memory parallel programming
* Portable across shared-memory architectures
+ Scalable (on shared-memory platforms)

+ Incremental parallelization

- Parallelize individual computations in a program while leaving
the rest of the program sequential

+ Compiler based
- Compiler generates thread program and synchronization

+ Extensions to existing programming languages
(Fortran, C and C++)
- mainly by directives
- a few library routines

See http://www.openmp.org

08/30/2012 CS4230

"THE
35 UUN[VERS[TY
OF UTAH

A Programmer's View of OpenMP

* OpenMP is a portable, threaded, shared-memory
programming specification with “light" syntax
- Exact behavior depends on OpenMP implementation!
- Requires compiler support (C/C++ or Fortran)

+ OpenMP will:

- Allow a programmer to separate a program into serial regions
u;:d pz(zjra//e regions, rather than concurrently-executing
threads.

- Hide stack management
- Provide synchronization constructs

+ OpenMP will not:
- Parallelize automatically

- Guarantee speedup
- Provide freedom from data races

08/30/2012 CS4230

"THE
36 UUN[VERS[TY
OF UTAH

8/30/12

OpenMP _Execution Model

+ Fork-join model of parallel execution
+ Begin execution as a single process (master thread)

+ Start of a parallel construct:
- Master thread creates team of threads (worker threads)

+ Completion of a parallel construct:
- Threads in the feam synchronize -- implicit barrier

* Only master thread continues execution

+ Implementation optimization: ?
- Worker threads spin waiting on next fork fork

08/30/2012 CS4230

2 00U [
OF UTAH

OpenMP uses Pragmas

* Pragmas are special preprocessor instructions.

* Typically added to a system to allow behaviors that
aren't part of the basic C specification.

+ Compilers that don't support the pragmas ignore them.

* The interpretation of OpenMP pragmas
- They modify the statement immediately following the pragma
- This could be a compound statement such as a loop

#pragma omp ...

08/30/2012 CS4230

THE
38 u UNIVERSITY
OF UTAH

+ PThreads:

Programming Model - Data Sharing

+ Parallel programs often emplo
two fypeps o% data ploy

- Shared data, visible to all
threads, similarly named

- Private data, visible to a single
thread (often stack-allocated)

// shared, globals
int bigdata[1024];

void* foo(void* bar) {
int tid;

+ Global-scoped variables are

shared #pragma omp parallel \
Stack-allocated variables are shared (bigdata) \
private
rivate (tid)
OpenMP: P

+ shared variables are shared {

+ private variables are private /* Calc. here */
Default is shared }

+ Loop index is private

THE
u UNIVERSITY
OF UTAH

OpenMP direcfive formaf C
(also Fortran and C++ bindings)

* Pragmas, format

#pragma omp directive_name [clause [clause] ...] new-
line

« Conditional compilation

#ifdef _OPENMP

block,

e.g., printf(“%d avail.processors\n”,omp_get_num procs());
#endif

« Case sensitive

« Include file for library routines
#ifdef _OPENMP
#include <omp.h>

#endif

08/30/2012 CS4230

"THE
40 UUN[VERS[TY
OF UTAH

8/30/12

10

OpenMP _runtime library, Query Functions
omp_get_num_threads:

Returns the number of threads currently in the team executing the
parallel region from which it is called

int omp_get_ num_threads(void);

omp_get_thread num:

Returns the thread number, within the team, that lies between 0 and
omp_get_num_threads()-1, inclusive. The master thread of the
team is thread 0

int omp_ get thread num(void);

08/30/2012 CS4230

THE
41 u UNIVERSITY
OF UTAH

OpenMP parallel region construct

* Block of code to be executed by multiple threads in
parallel

» Each thread executes the same code redundantly
(SPMD)

- Work within work-sharing constructs is distributed among
the threads in a team

» Example with C/C++ syntax
#pragma omp parallel [clause[clause]...]new-line
structured-block
» clause can include the following:
private (list)
shared (list)

08/30/2012 CS4230

THE
42 u UNIVERSITY
OF UTAH

Hello World in OpenMP

+ Let's start with a parallel region construct
* Things to think about

- As before, number of threads is read from command line

- Coﬁe should be correct without the pragmas and library
calls

- Differences from Pthreads

- More of the required code is managed by the compiler and
runtime (so shorter)

- There is an implicit thread identifier

gcc —fopenmp ...

08/30/2012 CS4230

"THE
43 UUN[VERS[TY
OF UTAH

#include <stdio.h>
—#include <stdlib.h>
#include <omp.h>

void Hello(void); /% Thread function %/
int main(int arge, charx argv[]) {
/% Get number of threads from command line +/

int thread_count = strtol(argv[l], NULL, 10);

pragma omp parallel num_threads(thread_count)
Hello();
return 0;

} /% main x/

void Hello(veid) {
int m

rank = omp_get_thread_num();
int thread_count = omp_get_num_threads();
printf("Hello from thread %d of %d\n", my_rank, thread_count);

} /% Hello */

Qp3aami12

"THE
44 UUN[VERS[TY
OF UTAH

8/30/12

11

8/30/12

In case the compiler doesn't support OpenMP

include <omp.h>

N

#ifdef _OPENMP
include <omp.h>
#endif

THE
0530812 45 u UNIVERSITY
OF UTAH

In case the compiler doesn't support OpenMP

ifdef OPENMP

int my_rank = omp_get_thread_num ();

int thread_count = omp_get_num_threads ();
#else

int my_rank = 0;

int thread_count = 1;
endif

THE
0530812 46 u UNIVERSITY
OF UTAH

OpenMP Data Parallel Construct: Parallel Loop

+ All pragmas begin: #pragma

+ Compiler calculates loop bounds for each thread
directly from serial source (computation decomposition)

+ Compiler also manages data partitioning of Res
+ Synchronization also automatic (barrier)

Serial Program: Parallel Program:
void main() void main()
double Res[1000]; double Res[1000];

#pragma omp parallel for
for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);
}
} }

THE
47 u UNIVERSITY
OF UTAH

08/30/2012 CS4230

Limitations and Semantics
* Not all “element-wise" loops can be ||ized

#pragma omp parallel for
for (i=0; i < numPixels; i++) {}

- Loop index: sighed integer

- Termination Test: <<= => with loop invariant int

- Incr/Decr by loop invariant int; change each iteration
- Count up for <<=: count down for >>=

- Basic block body: no control in/out except at top

* Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

THE
48 u UNIVERSITY
OF UTAH

08/30/2012 CS4230

12

8/30/12

OpenMP_Synchronization Summary of Lecture
* Implicit barrier + OpenMP, data-parallel constructs only
- At beginning and end of parallel constructs - Task-parallel constructs later
- At elr\d' of all o‘rhe'r' co‘nfrol constructs ' . - What's good?
- Emﬁls[g” synchronization can be removed with nowait - Small changes are required to produce a parallel program from
sequential {parallel formulation)
+ Explicit synchronization - Avoid having to express low-level mapping details
—critical - Portable and scalable, correct on 1 processor
-atomic * What is missing?
- Not completely natural if want to write a parallel code from
scratch
- Not always possible to express certain common parallel
constructs
- Locality management
- Control of performance
08/30/2012 84230 49 ugf;" IL}/TEARQITY 08/30/2012 84230 50 ugf;" IL}/TEARQITY

13

