
8/28/12

1

08/28/2012! CS4230!

CS4230 Parallel Programming  

Lecture 3:  
Introduction to Parallel

Architectures  

Mary Hall  
August 28, 2012 

1!

Homework 1: Parallel Programming Basics
Due before class, Thursday, August 30
Turn in electronically on the CADE machines using the handin
program: “handin cs4230 hw1 <probfile>”
•  Problem 1: (from today’s lecture) We can develop a model

for the performance behavior from the versions of parallel
sum in today’s lecture based on sequential execution time S,
number of threads T, parallelization overhead O (fixed for
all versions), and the cost B for the barrier or M for each
invocation of the mutex. Let N be the number of elements
in the list. For version 5, there is some additional work for
thread 0 that you should also model using the variables
above. (a) Using these variables, what is the execution time
of valid parallel versions 2, 3 and 5; (b) present a model of
when parallelization is profitable for version 3; (c) discuss
how varying T and N impact the relative profitability of
versions 3 and 5.

08/23/2012! CS4230! 2!

Homework 1: Parallel Programming Basics
•  Problem 2: (#1.3 in textbook): Try to write pseudo-code for

the tree-structured global sum illustrated in Figure 1.1.
Assume the number of cores is a power of two (1, 2, 4, 8, …).

 Hints: Use a variable divisor to determine whether a core
should send its sum or receive and add. The divisor
should start with the value 2 and be doubled after each
iteration. Also use a variable core_difference to
determine which core should be partnered with the current
core. It should start with the value 1 and also be doubled
after each iteration. For example, in the first iteration 0 %
divisor = 0 and 1 % divisor = 1, so 0 receives and
adds, while 1 sends. Also in the first iteration 0 +
core_difference = 1 and 1 – core_difference = 0,
so 0 and 1 are paired in the first iteration.

08/23/2012! CS4230! 3!

Today’s Lecture
• Flynn’s Taxonomy
• Some types of parallel architectures

- Shared memory
- Distributed memory

• These platforms are things you will probably use
-  CADE Lab1 machines (Intel Nehalem i7)
- Sun Ultrasparc T2 (water, next assignment)
- Nvidia GTX260 GPUs in Lab1 machines

• Sources for this lecture:
- Textbook
- Jim Demmel, UC Berkeley
- Notes on various architectures

08/28/2012! 4!CS4230!

8/28/12

2

Reading this week: Chapter 2.1-2.3 in textbook
Chapter 2: Parallel Hardware and Parallel Software
2.1 Some background
•  The von Neumann architecture
•  Processes, multitasking, and threads

2.2 Modifications to the von Neumann Model
•  The basics of caching
•  Cache Mappings
•  Caches and programs: an example
•  Virtual memory
•  Instruction-level parallelism
•  Hardware multithreading

2.3 Parallel Hardware
•  SIMD systems
•  MIMD systems
•  Interconnection networks
•  Cache coherence
•  Shared-memory versus distributed-memory

08/28/2012! CS4230! 5!

An Abstract Parallel Architecture

• How is parallelism managed?
• Where is the memory physically located?
• Is it connected directly to processors?
• What is the connectivity of the network?

08/28/2012! CS4230! 6!

Why are we looking at a bunch of architectures

• There is no canonical parallel computer – a diversity
of parallel architectures

- Hence, there is no canonical parallel programming language

• Architecture has an enormous impact on performance
- And we wouldn’t write parallel code if we didn’t care about

performance

• Many parallel architectures fail to succeed
commercially

-  Can’t always tell what is going to be around in N years

08/28/2012! CS4230! 7!

Challenge is to write parallel code that abstracts away architectural
features, focuses on their commonality, and is therefore easily ported
from one platform to another.

CS4230!

The von Neumann Architecture

Figure 2.1

Conceptually, a von Neumann architecture executes one instruction at a time

8/28/12

3

08/28/2012! CS4230!

Locality and Parallelism

•  Large memories are slow, fast memories are small
•  Program should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

9!

Uniprocessor and Parallel Architectures

08/28/2012! CS4230! 10!

Achieve performance by addressing the von Neumann bottleneck

• Reduce memory latency
• Access data from “nearby” storage: registers,
caches, scratchpad memory

• We’ll look at this in detail in a few weeks
• Hide or Tolerate memory latency

• Multithreading and, when necessary, context
switches while memory is being serviced

• Prefetching, predication, speculation
• Uniprocessors that execute multiple instructions
in parallel

• Pipelining
• Multiple issue
• SIMD multimedia extensions

How Does a Parallel Architecture Improve
on this Further?

08/28/2012! CS4230! 11!

• Computation and data partitioning focus a single
processor on a subset of data that can fit in
nearby storage

• Can achieve performance gains with simpler
processors

• Even if individual processor performance is
reduced, throughput can be increased

• Complements instruction-level parallelism
techniques

• Multiple threads operate on distinct data
• Exploit ILP within a thread

Flynn’s Taxonomy

CS4230!

SISD
Single instruction stream

Single data stream

(SIMD)
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

(MIMD)
Multiple instruction stream

Multiple data stream

classic von Neumann

not covered

08/28/2012! 12!

8/28/12

4

More Concrete: Parallel Control Mechanisms

08/28/2012! CS4230! 13!

Two main classes of parallel architecture
organizations

08/28/2012! CS4230! 14!

• Shared memory multiprocessor architectures
• A collection of autonomous processors connected to a

memory system.
• Supports a global address space where each processor

can access each memory location.

• Distributed memory architectures
• A collection of autonomous systems connected by an

interconnect.
• Each system has its own distinct address space, and

processors must explicitly communicate to share data.
• Clusters of PCs connected by commodity interconnect

is the most common example.

Programming Shared Memory Architectures

08/28/2012! CS4230! 15!

A shared-memory program is a collection of threads of control.
•  Threads are created at program start or possibly dynamically
•  Each thread has private variables, e.g., local stack variables
•  Also a set of shared variables, e.g., static variables, shared
common blocks, or global heap.
•  Threads communicate implicitly by writing and reading shared
variables.
•  Threads coordinate through locks and barriers implemented
using shared variables.

Programming Distributed Memory Architectures

08/28/2012! CS4230! 16!

A distributed-memory program consists of named processes.
• Process is a thread of control plus local address space -- NO
shared data.
• Logically shared data is partitioned over local processes.
• Processes communicate by explicit send/receive pairs
• Coordination is implicit in every communication event.

8/28/12

5

Shared Memory Architecture 1:
Intel i7 860 Nehalem (CADE LAB1)

08/28/2012! CS4230! 17!

256KB L2
Unified Cache

32KB L1
Instr Cache

32KB L1
Data Cache

Shared 8MB L3 Cache

Up to 16 GB Main Memory (DDR3 Interface)

Proc

256KB L2
Unified Cache

32KB L1
Instr Cache

32KB L1
Data Cache

Proc

256KB L2
Unified Cache

32KB L1
Instr Cache

32KB L1
Data Cache

Proc

256KB L2
Unified Cache

32KB L1
Instr Cache

32KB L1
Data Cache

Proc

Bus (Interconnect)

More on Nehalem and Lab1 machines -- ILP

08/28/2012! CS4230! 18!

•  Target users are general-purpose
•  Personal use
•  Games
•  High-end PCs in clusters

•  Support for SSE 4.2 SIMD instruction set
•  8-way hyperthreading (executes two threads per core)
•  multiscalar execution (4-way issue per thread)
•  out-of-order execution
•  usual branch prediction, etc.

Shared Memory Architecture 2:
Sun Ultrasparc T2 Niagara (water)

08/28/2012! CS4230! 19!

Proc

FPU

Proc

FPU

Proc

FPU

Proc

FPU

Proc

FPU

Proc

FPU

Proc

FPU

Proc

FPU

Memory
Controller

512KB
L2

Cache

512KB
L2

Cache

Memory
Controller

512KB
L2

Cache

512KB
L2

Cache

Memory
Controller

512KB
L2

Cache

512KB
L2

Cache

Memory
Controller

512KB
L2

Cache

512KB
L2

Cache

Full Cross-Bar (Interconnect)

More on Niagara

08/28/2012! CS4230! 20!

•  Target applications are server-class, business operations
•  Characterization:

•  Floating point?
•  Array-based computation?

•  Support for VIS 2.0 SIMD instruction set
•  64-way multithreading (8-way per processor, 8 processors)

8/28/12

6

24 Multiprocessors, with 8
SIMD processors per
multiprocessor
•  SIMD Execution of warpsize threads
(from single block)

•  Multithreaded Execution across
different instruction streams

Complex and largely
programmer-controlled memory
hierarchy
•  Shared Device memory

•  Per-multiprocessor “Shared memory”

•  Some other constrained memories
(constant and texture memories/caches)

•  No standard data cache

Device	

Mul*processor	
 23	

Mul*processor	
 2	

Mul*processor	
 0	

Device	
 memory	

Shared	
 Memory	

Instruc*on	

Unit	

Processor	
 0	

Registers	

…	

Processor	
 2	

Registers	

Processor	
 7	

Registers	

Constant	

Cache	

Texture	

Cache	

Shared Memory Architecture 3: GPUs
Lab1 has Nvidia GTX 260 accelerators

08/28/2012! 21!CS4230!

Jaguar Supercomputer

08/28/2012! CS4230! 22!

Peak performance of 2.33 Petaflops
224,256 AMD Opteron cores

http://www.olcf.ornl.gov/computing-resources/jaguar/

Shared Memory Architecture 4:
Each Socket is a 12-core AMD Opteron Istanbul

08/28/2012! CS4230! 23!

Shared 6MB L3 Cache

Hyper Transport Link (Interconnect)

6-core “Processor” 6-core “Processor”

H
yp

er
 T

ra
ns

po
rt

H
yp

er
 T

ra
ns

po
rt

H
yp

er
 T

ra
ns

po
rt

H
yp

er
 T

ra
ns

po
rt

8 GB Main Memory (DDR3 Interface)

Shared Memory Architecture 3:
Each Socket is a 12-core AMD Opteron Istanbul

08/28/2012! CS4230! 24!

Shared 6MB L3 Cache

8 GB Main Memory (DDR3 Interface)

512 KB L2
Unified Cache

64KB L1
Instr Cache

64KB L1
Data Cache

Proc

Hyper Transport Link (Interconnect)

512 KB L2
Unified Cache

64KB L1
Instr Cache

64KB L1
Data Cache

Proc

512 KB L2
Unified Cache

64KB L1
Instr Cache

64KB L1
Data Cache

Proc

512 KB L2
Unified Cache

64KB L1
Instr Cache

64KB L1
Data Cache

Proc

512 KB L2
Unified Cache

64KB L1
Instr Cache

64KB L1
Data Cache

Proc

512 KB L2
Unified Cache

64KB L1
Instr Cache

64KB L1
Data Cache

Proc

8/28/12

7

Jaguar is a Cray XT5 (plus XT4)
Interconnect is a 3-d mesh

08/28/2012! CS4230! 25!

3-dimensional toroidal mesh

http://www.cray.com/Assets/PDF/products/xt/CrayXT5Brochure.pdf

Summary of Architectures
Two main classes
• Complete connection: CMPs, SMPs, X-bar

- Preserve single memory image
- Complete connection limits scaling to small number

of processors (say, 32 or 256 with heroic network)
- Available to everyone (multi-core)

• Sparse connection: Clusters, Supercomputers,
Networked computers used for parallelism

- Separate memory images
- Can grow “arbitrarily” large
- Available to everyone with LOTS of air conditioning

• Programming differences are significant
08/28/2012! CS4230! 26!

Brief Discussion
• Why is it good to have different parallel
architectures?

- Some may be better suited for specific application
domains

- Some may be better suited for a particular
community

- Cost
- Explore new ideas

• And different programming models/
languages?

- Relate to architectural features
- Application domains, user community, cost,

exploring new ideas

08/28/2012! CS4230! 27!

