
8/23/12 

1 

08/23/2012! CS4230!

CS4230 Parallel Programming  

Lecture 2:  
Introduction to Parallel 

Algorithms  

Mary Hall  
August 23, 2012 

1!

Homework 1: Parallel Programming Basics 
Due before class, Thursday, August 30  
Turn in electronically on the CADE machines using the handin 
program:     “handin cs4230 hw1 <probfile>” 
•  Problem 1: (from today’s lecture) We can develop a model 

for the performance behavior from the versions of parallel 
sum in today’s lecture based on sequential execution time S, 
number of threads T, parallelization overhead O (fixed for 
all versions), and the cost B for the barrier or M for each 
invocation of the mutex.  Let N be the number of elements 
in the list.  For version 5, there is some additional work for 
thread 0 that you should also model using the variables 
above.  (a) Using these variables, what is the execution time 
of valid parallel versions 2, 3 and 5; (b) present a model of 
when parallelization is profitable for version 3; (c) discuss 
how varying T and N impact the relative profitability of 
versions 3 and 5. 

08/23/2012! CS4230! 2!

Homework 1: Parallel Programming Basics 
•  Problem 2: (#1.3 in textbook): Try to write pseudo-code for 

the tree-structured global sum illustrated in Figure 1.1.   
Assume the number of cores is a power of two (1, 2, 4, 8, …).   

   Hints: Use a variable divisor to determine whether a core 
should send its sum or receive and add.  The divisor 
should start with the value 2 and be doubled after each 
iteration.  Also use a variable core_difference to 
determine which core should be partnered with the current 
core.  It should start with the value 1 and also be doubled 
after each iteration.  For example, in the first iteration 0 % 
divisor = 0 and 1 % divisor = 1, so 0 receives and 
adds, while 1 sends.  Also in the first iteration 0 + 
core_difference = 1 and 1 – core_difference = 0, 
so 0 and 1 are paired in the first iteration. 

08/23/2012! CS4230! 3!

Homework 1, cont. 
• Problem 3: What are your goals after this year and 

how do you anticipate this class is going to help you 
with that? Some possible answers, but please feel 
free to add to them. Also, please write at least one 
sentence of explanation. 

- A job in the computing industry 
- A job in some other industry that uses computing  
- As preparation for graduate studies 
- To satisfy intellectual curiosity about the future of the 

computing field 
- Other 

08/23/2012! CS4230! 4!



8/23/12 

2 

Today’s Lecture 

• Aspects of parallel algorithms (and a hint at 
complexity!) 

• Derive parallel algorithms 
• Discussion 
• Sources for this lecture: 

- Slides accompanying textbook 

08/23/2012! 5!CS4230!

Reasoning about a Parallel Algorithm 
• Ignore architectural details for now (next 
time) 

• Assume we are starting with a sequential 
algorithm and trying to modify it to execute in 
parallel 

- Not always the best strategy, as sometimes the 
best parallel algorithms are NOTHING like their 
sequential counterparts 

- But useful since you are accustomed to sequential 
algorithms 

08/23/2012! CS4230! 6!

Reasoning about a parallel algorithm, cont. 

• Computation Decomposition 
- How to divide the sequential computation among 

parallel threads/processors/computations? 

• Aside: Also, Data Partitioning (ignore today) 
• Preserving Dependences 

- Keeping the data values consistent with respect 
to the sequential execution.  

• Overhead 
- We’ll talk about some different kinds of 

overhead  

08/23/2012! CS4230! 7!

Race Condition or Data Dependence 

• A race condition exists when the result of an 
execution depends on the timing of two or 
more events. 

• A data dependence is an ordering on a pair of 
memory operations that must be preserved to 
maintain correctness. (More on data 
dependences in a subsequent lecture.) 

• Synchronization is used to sequence control 
among threads or to sequence accesses to 
data in parallel code.  

08/23/2012! 8!CS4230!



8/23/12 

3 

Simple Example (p. 4 of text) 

• Compute n values and add them together. 
• Serial solution: 

• Parallel formulation? 

9!08/23/2012! CS4230!

Version 1: Computation Partitioning 
•  Suppose each core computes a partial sum on n/t consecutive 

elements (t is the number of threads or processors) 
•  Example: n = 24 and t = 8, threads are numbered from 0 to 3 

08/23/2012! CS4230! 10!

1 { 

t0 t1 t2 t3 

int block_length_per_thread = n/t;     
int start = id * block_length_per_thread;     
for (i=start; i<start+block_length_per_thread; i++)  {            
     x = Compute_next_value(…); 
     sum += x; 
} 

4 3
4

9 { 2 8
4

5 { 1 1
4

6 { 2 7 2 { 5 0
4

4 { 1 8
4

2 { 3 9
4

6 { 5 1
4

t4 t5 t6 t7 

What Happened? 
• Dependence on sum across iterations/
threads 

- But reordering ok since operations on sum are 
associative  

• Load/increment/store must be done 
atomically to preserve sequential meaning 

• Definitions: 
- Atomicity: a set of operations is atomic if either 

they all execute or none executes.  Thus, there 
is no way to see the results of a partial 
execution. 

- Mutual exclusion: at most one thread can 
execute the code at any time 

08/23/2012! CS4230! 11!

Version 2: Add Locks 
• Insert mutual exclusion (mutex) so that only 
one thread at a time is loading/incrementing/
storing count atomically 

08/23/2012! CS4230! 12!

int block_length_per_thread = n/t;     
mutex m; 
int start = id * block_length_per_thread;     
for (i=start; i<start+block_length_per_thread; i++)  {            
     my_x = Compute_next_value(…); 
     mutex_lock(m);        
     sum += my_x; 
     mutex_unlock(m);      
} 

Correct now.   Done? 



8/23/12 

4 

Version 3: Increase Granularity 
• Version 3: 

-  Lock only to update final sum from private copy 

08/23/2012! CS4230! 13!

int block_length_per_thread = n/t;     
mutex m; 
int my_sum;  
int start = id * block_length_per_thread;     
for (i=start; i<start+block_length_per_thread; i++)  {            
     my_x = Compute_next_value(…); 
     my_sum += my_x; 
} 
mutex_lock(m);        
sum += my_sum; 
mutex_unlock(m);      

Version 4: Eliminate lock  
• Version 4 (bottom of page 4 in textbook): 

-  “Master” processor accumulates result 

08/23/2012! CS4230! 14!

int block_length_per_thread = n/t;     
mutex m; 
shared my_sum[t];  
int start = id * block_length_per_thread;     
for (i=start; i<start+block_length_per_thread; i++)  {            
     my_x = Compute_next_value(…); 
     my_sum[id] += my_x; 
} 
if (id == 0) { // master thread 
   sum = my_sum[0]; 
   for (i=1; i<t; i++) sum += my_sum[i]; 
} 

Correct? Why not? 

More Synchronization: Barriers 
• Incorrect if master thread begins accumulating final 

result before other threads are done 
• How can we force the master to wait until the 

threads are ready? 
• Definition: 

- A barrier is used to block threads from proceeding  beyond 
a program point until all of the participating threads has 
reached the barrier. 

-  Implementation of barriers? 

08/23/2012! CS4230! 15!

Version 5: Eliminate lock, but add barrier 
• Version 5 (bottom of page 4 in textbook): 

-  “Master” processor accumulates result 

08/23/2012! CS4230! 16!

int block_length_per_thread = n/t;     
mutex m; 
shared my_sum[t];  
int start = id * block_length_per_thread;     
for (i=start; i<start+block_length_per_thread; i++)  {            
     my_x = Compute_next_value(…); 
     my_sum[t] += x; 
} 
Synchronize_cores(); // barrier for all participating threads 
if (id == 0) { // master thread 
   sum = my_sum[0]; 
   for (i=1; i<t; i++) sum += my_sum[t]; 
} 

Now it’s correct! 



8/23/12 

5 

Version 6 (homework):  
Multiple cores forming a global sum 

17!CS4230!08/23/2012!

How do we write parallel programs? 

• Task parallelism  
-  Partition various tasks carried out solving the problem among 

the cores. 

• Data parallelism 
-  Partition the data used in solving the problem among the cores. 
-  Each core carries out similar operations on it’s part of the 

data. 

18!CS4230!08/23/2012!

Professor P 

15 questions 
300 exams 

19!CS4230!
08/23/2012!

Professor P’s grading assistants 

TA#1 
TA#2 TA#3 

20!CS4230!08/23/2012!



8/23/12 

6 

Division of work – data parallelism 

TA#1 

TA#2 

TA#3 

100 exams 

100 exams 

100 exams 

21!CS4230!08/23/2012!

Division of work – task parallelism 

TA#1 

TA#2 

TA#3 

Questions 1 - 5 

Questions 6 - 10 

Questions 11 - 15 

22!CS4230!08/23/2012!

08/23/2012! CS4230!

Summary of Lessons from Sum Computation 

23!

Data and Task Parallelism: Discussion Problem 1 
•  Problem 1: Recall the example of building a house from the first 

lecture.   
-  (a) Identify a portion of home building that can employ data 

parallelism, where “data” in this context is any object used as 
an input to the home-building process, as opposed to tools 
that can be thought of as processing resources. 

-  (b) Identify task parallelism in home building by defining a set 
of tasks.  Work out a schedule that shows when the various 
tasks can be performed. 

-  (c) Describe how task and data parallelism can be combined in 
building a home.  What computations can be reassigned to 
different workers to balance the load? 

08/23/2012! CS4230! 24!



8/23/12 

7 

Data and Task Parallelism: Discussion Problem 2 
•  Problem 2: I recently had to tabulate results from a written 

survey that had four categories of respondents: (I) students; (II) 
academic professionals; (III) industry professionals; and, (IV) 
other.  The number of respondents in each category was very 
different; for example, there were far more students than other 
categories.  The respondents selected to which category they 
belonged and then answered 32 questions with five possible 
responses: (i) strongly agree; (ii) agree; (iii) neutral; (iv) disagree; 
and, (v) strongly disagree.  My family members and I tabulated 
the results “in parallel” (assume there were four of us). 

-  (a) Identify how data parallelism can be used to tabulate the results 
of the survey.  Keep in mind that each individual survey is on a 
separate sheet of paper that only one “processor” can examine at a 
time.   Identify scenarios that might lead to load imbalance with a 
purely data parallel scheme. 

-  (b) Identify how task parallelism and combined task and data 
parallelism can be used to tabulate the results of the survey to 
improve upon the load imbalance you have identified. 

08/23/2012! CS4230! 25!


