
11/8/12

1

L18: CUDA, cont. 
Memory Hierarchy and

Examples"

November 9, 2012!

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time (usually in cycles)

between a memory request and its completion
– Optimizations: Data placement in nearby portion of memory

hierarchy (focus on registers and shared memory in this class)
•  Maximize memory bandwidth

– Bandwidth is the amount of useful data that can be retrieved
over a time interval

– Optimizations: Global memory coalescing, avoid shared memory
bank conflicts

•  Manage overhead
– Cost of performing optimization (e.g., copying) should be less than

anticipated gain
– Requires sufficient reuse to amortize cost of copies to shared

memory, for example

2

Global Memory Accesses

• Each thread issues memory accesses to data types of
varying sizes, perhaps as small as 1 byte entities

• Given an address to load or store, memory returns/
updates “segments” of either 32 bytes, 64 bytes or 128
bytes

• Maximizing bandwidth:
- Operate on an entire 128 byte segment for each memory transfer

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA
Manual 5.1.2.1)

• Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

• Find other active threads requesting addresses within
that segment and coalesce

• Reduce transaction size if possible
• Access memory and mark threads as “inactive”
• Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms

11/8/12

2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

Now Let’s Look at Shared Memory

• Common Programming Pattern (5.1.2 of
CUDA manual)

- Load data into shared memory
- Synchronize (if necessary)
- Operate on data in shared memory
- Synchronize (if necessary)
- Write intermediate results to global

memory
- Repeat until done

Shared
memory

Global memory

Familiar concept???

Mechanics of Using Shared Memory

• __shared__ type qualifier required
• Must be allocated from global/device function,
or as “extern”

• Examples:

extern __shared__ float d_s_array[];

/* a form of dynamic allocation */
/* MEMSIZE is size of per-block */
/* shared memory*/
__host__ void outerCompute() {
 compute<<<gs,bs,MEMSIZE>>>();
}
__global__ void compute() {
 d_s_array[i] = …;
}

__global__ void compute2() {
 __shared__ float d_s_array[M];

 /* create or copy from global memory */
 d_s_array[j] = …;

 /* write result back to global memory */
 d_g_array[j] = d_s_array[j];
}

11/8/12

3

Bandwidth to Shared Memory:
Parallel Memory Accesses

• Consider each thread accessing a different location
in shared memory

• Bandwidth maximized if each one is able to proceed
in parallel

• Hardware to support this
-  Banked memory: each bank can support an access on every

memory cycle

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Bank Addressing Examples

•  No Bank Conflicts
-  Linear addressing

stride == 1

•  No Bank Conflicts
-  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

11

Bank Addressing Examples

•  2-way Bank Conflicts
-  Linear addressing

stride == 2

•  8-way Bank Conflicts
-  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

How addresses map to banks on G80 (older
technology)

•  Each bank has a bandwidth of 32 bits per clock cycle
•  Successive 32-bit words are assigned to successive

banks
•  G80 has 16 banks

-  So bank = address % 16
-  Same as the size of a half-warp

-  No bank conflicts between different half-warps, only within a
single half-warp

11/8/12

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
-  If all threads of a half-warp access different banks, there

is no bank conflict
-  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)

•  The slow case:
-  Bank Conflict: multiple threads in the same half-warp access

the same bank
-  Must serialize the accesses
-  Cost = max # of simultaneous accesses to a single bank

Example: Matrix vector multiply
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 a[i] += c[j][i] * b[j];
 }
}

Remember to:
•  Consider data dependences in parallelization strategy to

avoid race conditions
•  Derive a partition that performs global memory coalescing
•  Exploit locality in shared memory and registers

Let’s Take a Closer Look

•  Implicitly use tiling
to decompose
parallel computation
into independent
work

•  Additional tiling is
used to map
portions of “b” to
shared memory
since it is shared
across threads

•  “a” has reuse within
a thread so use a
register

Resulting CUDA code (Automatically
Generated by our Research Compiler)

__global__ mv_GPU(float* a, float* b, float** c) {
 int bx = blockIdx.x; int tx = threadIdx.x;
 __shared__ float bcpy[32];
 double acpy = a[tx + 32 * bx];
 for (k = 0; k < 32; k++) {
 bcpy[tx] = b[32 * k + tx];
 __syncthreads();
 //this loop is actually fully unrolled
 for (j = 32 * k; j <= 32 * k + 32; j++) {
 acpy = acpy + c[j][32 * bx + tx] * bcpy[j];
 }
 __synchthreads();
 }
 a[tx + 32 * bx] = acpy;
}

11/8/12

5

What happens if we transpose C?
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 a[i] += c[i][j] * b[j];
 }
}

What else do we need to worry about?

Resulting CUDA code for Transposed
Matrix Vector Multiply

__global__ mv_GPU(float* a, float* b, float** c) {
 int bx = blockIdx.x; int tx = threadIdx.x;
 __shared__ float bcpy[16];
 __ shared__ float P1[16][17]; //pad
 double acpy = a[tx + 16 * bx];
 for (k = 0; k < 16; k++) {
 bcpy[tx] = b[16 * k + tx];
 for (l=0; l<16; l++) {
 _P1[l][tx] = c[k*bx+l][16*bx+tx]; // copy in coalesced order
 }
 __syncthreads();
 //this loop is actually fully unrolled
 for (j = 16 * k; j <= 16 * k + 16; j++) {
 acpy = acpy + _P1[tx][j] * bcpy[j];
 }
 __synchthreads();
 }
 a[tx + 32 * bx] = acpy;
}

Summary of Lecture
• A deeper probe of performance issues

- Heterogeneous memory hierarchy
-  Locality and bandwidth

- Tiling for CUDA code generation

