L18: CUDA, cont.
Memory Hierarchy and
Examples

November 9, 2012

Targets of Memory Hierarchy
Optimizations

* Reduce memory latency

— The IuTenc% of a memory access is the time (usually in cycles)
between a memory request and its completion

— Opftimizations: Data placement in nearby portion of memol
higr‘ar‘cﬁ'ly gécus on rPegis‘rers and Shared F:‘nemory Ifl'l ThiS crpr;ss)
* Maximize memory bandwidth

— Bandwidth is the crr\oum‘ of useful data that can be retrieved
over a time interval

— Opfimizations: Global memory coalescing, avoid shared memor
bgnk comIlicTs i 9 Y

* Manage overhead
—ggfsi'rciopmaggfgo&:‘nung optimization (e.g., copying) should be less than

- Ret#;lires ufficient reuse to amortize cost of copies to shared
memory, for example

"THE
2 u UNIVERSITY
OF UTAH

Global Memory Accesses

* Each thread issues memory accesses to data types of
varying sizes, perhaps as small as 1 byte entities

* Given an address to load or store memory returns/
updates “segments” of either 32 bytes, 64 bytes or 128
bytes

* Maximizing bandwidth:

- Operate on an entire 128 byte segment for each memory transfer

THE
u UNIVERSITY
OF UTAH

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA
Manu<\1/l %.1.2.1) P P Y (

+ Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

* Find other active threads requesting addresses within
that segment and coalesce

* Reduce transaction size if possible
+ Access memory and mark threads as “inactive”
* Repeat until all threads in half-warp are serviced

THE
u UNIVERSITY
OF UTAH

*Includes Tesla and GTX platforms

11/8/12

Memory Layout of a Matrix in C

Access [Melunfuolus
directionin [VIEYVRREYIRIVIS
Kernel ————
code M2 My, My, M3,

Myz Miz My M35

Time Period 1 Time Period 2

Ty Ty Ty T, (|7, T, T3 T,

iRARRARA

mm MD‘1 M1‘1 M?A M3.1 MH‘J MLZ MQ‘Z M?H MU,‘J‘ M1‘3 M2‘3 M3‘3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access] Y W M)
direction in Moy My, My, My,
Kernel

code Moz My, My, Mj,

MO‘S M1.3 MH‘?} M3‘3
Time Period 2
T, T, T, T,

Tifne Period 1
T T, T, T,

I A

mm MD‘1 M1‘1 M?A M3.1 MH‘J MLZ MQ‘Z MSH MU,‘J‘ M1‘3 M2‘3 M3‘3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Now Let's Look at Shared Memory

- Common Programming Pattern (5.1.2 of
CUDA manual)

- Load data into shared memory

- Synchronize (if necessary)

- Operate on data in shared memory
- Synchronize (if necessary)

- Write intermediate results to global
memory

- Repeat until done

Global memory

Familiar concept???

Mechanics of Using Shared Memory

+__shared___ type qualifier required

* Must be allocated from global/device function,
or as "extern”

* Examples:

extern __shared__float d_s_array[]; _ global__ void compute2() {

/* a form of dynamic allocation */

/* MEMSIZE is size of per-block */

I* shared memory*/

__host__ void outerCompute() {

compute<<<gs,bs,MEMSIZE>>>();

}

__global__ void compute() {
d_s_array[i] = ...;

}

__shared__ float d_s_array[M];

/* create or copy from global memory *
d_s_array[j] = ...;

/* write result back to global memory */

d_g_array[j] = d_s_array[j];
}

T
u UNIVERSITY
OF UTAH

11/8/12

BandwidTh To Shared Memory:
Parallel Memory Accesses

+ Consider each thread accessing a different location
in shared memory

+ Bandwidth maximized if each one is able to proceed
in parallel
* Hardware to support this

- Banked memory: each bank can support an access on every
memory cycle

THE
u UNIVERSITY
OF UTAH

Bank Addressing Examples

- No Bank Conflicts + No Bank Conflicts
- Linear addressing - Random 1:1 Permutation
stride ==1

Thread 0
Thread 1
Thread 2

]
]
Thread 4 -
]
]

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 5
Thread 6 ‘

Thread 7

Bank 15 Thread 15 Bank 15

THE
u UNIVERSITY
OF UTAH

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Bank Addressing Examples

+ 2-way Bank Conflicts

- Linear addressing
stride == 2

+ 8-way Bank Conflicts

- Linear addressing
stride == 8

Thread 0 x5,
Thread 1 V
Thread 2 ’
Thread 3 § ‘
Thread 4 '
Thread 5 &
Thread 6 S

Thread 7

Thread 0

Thread 1 -‘
) ‘,
Thread 3 ‘ ‘

Thread 4

70,

Thread 9
Thread 10
Thread 11

@] Banko

Bank 15
THE
u UNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu,2007-2009

COC AQQAL 1ini ity af lllinaic 1k Oh

Thread 15

How addresses map to banks on 680 (older
technology)

+ Each bank has a bandwidth of 32 bits per clock cycle

+ Successive 32-bit words are assigned to successive
banks
+ 680 has 16 banks
- So bank = address % 16
- Same as the size of a half-warp

- No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

THE
u UNIVERSITY
OF UTAH

11/8/12

Shared memory bank conflicts

+ Shared memory is as fast as registers if there are no
bank conflicts

+ The fast case:

- If all threads of a half-warp access different banks, there
is no bank conflict

- If all threads of a half-warp access the identical address,
there is no bank conflict (broadcast)
- The slow case:

- Bank Conflict: multiple threads in the same half-warp access
the same bank

- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 "THE
ECE 498AL, University of lllinois, Urbana-Champaign ugl;’{}/TEAR[_%ITY

Example: Matrix vector multiply
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
ali] += c[jI[i1* b[j1;

Remember to:
+ Consider data dependences in parallelization strategy to
avoid race conditions

+ Derive a partition that performs global memory coalescing
+ Exploit locality in shared memory and registers

THE
u UNIVERSITY
OF UTAH

Let's Take a Closer Look

+ Implicitly use tiling
to decompose
parallel computation

copy to shared
memory J

* Additional tiling is
copy to registers
shared memory
" for < NITJ; j#+) ITile Cont. (Shared Memory)
* "a" has reuse within

into independent
R T LT

work (ali] = alil+ cGltil* bl ;)
used to map
portions of "b" to
Since iT is Shﬂr‘ed Il Block (N/T1,1), Threads (T1,1)
across threads for (ii = 0; 1 < NITI; i++) IIBlock.X

for (i=0;i < Tl i++) liThread.X

for (j=0;] < TJ; j#+)

a thread so use a
register

THE
u UNIVERSITY
OF UTAH

Resulting CUDA code (Automatically
Generated by our Research Compiler)

__global__ mv_GPU(float* a, float* b, float** c) {
int bx = blockIdx.x; int tx = threadIdx.x;
__shared__ float bepy[32];
double acpy = a[tx + 32 * bx];
for (k= 0; k < 32; k++) {

bepy[tx] = b[32 * k + tx];
__syncthreads();
//this loop is actually fully unrolled
for (j=32*k; j<=32*k+32; j++){
acpy = acpy + c[j][32 * bx + tx] * bepy[jL:

__synchthreads();

a[tx + 32 * bx] = acpy:
}

THE
u UNIVERSITY
OF UTAH

11/8/12

11/8/12

What happens if we transpose C?
for (i=0; i<n; i++) {
for (j=0: jn; j++) {
a[i] += c[il[j1* b[j1:

What else do we need to worry about?

THE
u UNIVERSITY
OF UTAH

Summary of Lecture

+ A deeper probe of performance issues
- Heterogeneous memory hierarchy
- Locality and bandwidth
- Tiling for CUDA code generation

THE
UUN[VERS[TY
OF UTAH

Resulfing CUDA code for Transposed
Matrix Vector Multiply

__global__ mv_GPU(float* a, float* b, float** c) {
int bx = blockIdx.x; int tx = threadIdx.x;
__shared__ float bcpy[16]:
___shared__ float P1[16][17]; //pad
double acpy = a[tx + 16 * bx];
for (k= 0; k< 16; k++) {
bepy[tx] = b[16 * k + tx];
for (1=0; I<16; 1++) {
_P1[1][tx] = c[k*bx+|][16*bx+tx]; // copy in coalesced order

__syncthreads();

//this loop is actually fully unrolled

for (j=16* ki j<= 16 * k+ 16; j++){
acpy = acpy + _PI[tx][j]* bepylj:

__synchthreads();

}

a[tx + 32 * bx] = acpy:

) U

THE
UNIVERSITY
OF UTAH

