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L18: CUDA, cont. 
Memory Hierarchy and 

Examples"

November 9, 2012!

Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time (usually in cycles) 

between a memory request and its completion 
– Optimizations: Data placement in nearby portion of memory 

hierarchy (focus on registers and shared memory in this class) 
•  Maximize memory bandwidth 

– Bandwidth is the amount of useful data that can be retrieved 
over a time interval 

– Optimizations: Global memory coalescing, avoid shared memory 
bank conflicts 

•  Manage overhead 
– Cost of performing optimization (e.g., copying) should be less than 

anticipated gain 
– Requires sufficient reuse to amortize cost of copies to shared 

memory, for example 
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Global Memory Accesses 

• Each thread issues memory accesses to data types of 
varying sizes, perhaps as small as 1 byte entities 

• Given an address to load or store, memory returns/
updates “segments” of either 32 bytes, 64 bytes or 128 
bytes 

• Maximizing bandwidth: 
- Operate on an entire 128 byte segment for each memory transfer 

Understanding Global Memory Accesses 

Memory protocol for compute capability 1.2* (CUDA 
Manual 5.1.2.1) 

• Start with memory request by smallest numbered 
thread.  Find the memory segment that contains the 
address (32, 64 or 128 byte segment, depending on 
data type) 

• Find other active threads requesting addresses within 
that segment and coalesce 

• Reduce transaction size if possible 
• Access memory and mark threads as “inactive” 
• Repeat until all threads in half-warp are serviced 

*Includes Tesla and GTX platforms 



11/8/12 

2 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

Memory Layout of a Matrix in C 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

T1 T2 T3 T4 

Time Period 1 

T1 T2 T3 T4 

Time Period 2 

Access 
direction in 
Kernel 
code 

… 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

Memory Layout of a Matrix in C 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

T1 T2 T3 T4 

Time Period 1 

T1 T2 T3 T4 

Time Period 2 

Access 
direction in 
Kernel 
code 

… 

Now Let’s Look at Shared Memory 

• Common Programming Pattern (5.1.2 of 
CUDA manual) 

- Load data into shared memory 
- Synchronize (if necessary) 
- Operate on data in shared memory 
- Synchronize (if necessary) 
- Write intermediate results to global 

memory 
- Repeat until done 

Shared 
memory 

Global memory 

Familiar concept??? 

Mechanics of Using Shared Memory 

• __shared__ type qualifier required 
• Must be allocated from global/device function, 
or as “extern” 

• Examples: 

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocation */ 
/* MEMSIZE is size of per-block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs,MEMSIZE>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   /* create or copy from global memory */ 
   d_s_array[j] = …; 

  /* write result back to global memory */ 
   d_g_array[j] =  d_s_array[j]; 
}  
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Bandwidth to Shared Memory: 
Parallel Memory Accesses 

• Consider each thread accessing a different location 
in shared memory 

• Bandwidth maximized if each one is able to proceed 
in parallel 

• Hardware to support this 
-  Banked memory: each bank can support an access on every 

memory cycle 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

Bank Addressing Examples 

•  No Bank Conflicts 
-  Linear addressing  

stride == 1 

•  No Bank Conflicts 
-  Random 1:1 Permutation 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
ECE 498AL, University of Illinois, Urbana-Champaign 

11 

Bank Addressing Examples 

•  2-way Bank Conflicts 
-  Linear addressing  

stride == 2 

•  8-way Bank Conflicts 
-  Linear addressing  

stride == 8 
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How addresses map to banks on G80 (older 
technology) 

•  Each bank has a bandwidth of 32 bits per clock cycle 
•  Successive 32-bit words are assigned to successive 

banks 
•  G80 has 16 banks 

-  So bank = address % 16 
-  Same as the size of a half-warp 

-  No bank conflicts between different half-warps, only within a 
single half-warp 
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Shared memory bank conflicts 

•  Shared memory is as fast as registers if there are no 
bank conflicts 

•  The fast case: 
-  If all threads of a half-warp access different banks, there 

is no bank conflict 
-  If all threads of a half-warp access the identical address, 

there is no bank conflict (broadcast) 

•  The slow case: 
-  Bank Conflict: multiple threads in the same half-warp access 

the same bank 
-  Must serialize the accesses 
-  Cost = max # of simultaneous accesses to a single bank 

Example: Matrix vector multiply 
for (i=0; i<n; i++) { 
   for (j=0; j<n; j++) { 
       a[i] += c[j][i] * b[j]; 
   } 
} 

Remember to: 
•  Consider data dependences in parallelization strategy to 

avoid race conditions 
•  Derive a partition that performs global memory coalescing 
•  Exploit locality in shared memory and registers 

Let’s Take a Closer Look 

•  Implicitly use tiling 
to decompose 
parallel computation 
into independent 
work 

•  Additional tiling is 
used to map 
portions of “b” to 
shared memory 
since it is shared 
across threads 

•  “a” has reuse within 
a thread so use a 
register 

Resulting CUDA code (Automatically 
Generated by our Research Compiler) 

__global__ mv_GPU(float* a, float* b, float** c) { 
  int bx = blockIdx.x; int tx = threadIdx.x; 
  __shared__ float bcpy[32]; 
  double acpy = a[tx + 32 * bx]; 
  for (k = 0; k < 32; k++) { 
     bcpy[tx] = b[32 * k + tx]; 
     __syncthreads(); 
    //this loop is actually fully unrolled 
    for (j = 32 * k; j <= 32 * k + 32; j++) { 
        acpy = acpy + c[j][32 * bx + tx] * bcpy[j]; 
    } 
    __synchthreads(); 
  } 
  a[tx + 32 * bx] = acpy; 
}  
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What happens if we transpose C? 
for (i=0; i<n; i++) { 
   for (j=0; j<n; j++) { 
       a[i] += c[i][j] * b[j]; 
   } 
} 

What else do we need to worry about? 

Resulting CUDA code for Transposed 
Matrix Vector Multiply 

__global__ mv_GPU(float* a, float* b, float** c) { 
  int bx = blockIdx.x; int tx = threadIdx.x; 
  __shared__ float bcpy[16]; 
  __ shared__ float P1[16][17];  //pad 
  double acpy = a[tx + 16 * bx]; 
  for (k = 0; k < 16; k++) { 
     bcpy[tx] = b[16 * k + tx]; 
    for (l=0; l<16; l++) { 
        _P1[l][tx] = c[k*bx+l][16*bx+tx];   // copy in coalesced order 
    } 
     __syncthreads(); 
    //this loop is actually fully unrolled 
    for (j = 16 * k; j <= 16 * k + 16; j++) { 
        acpy = acpy + _P1[tx][j] * bcpy[j]; 
    } 
    __synchthreads(); 
  } 
  a[tx + 32 * bx] = acpy; 
}  

Summary of Lecture 
• A deeper probe of performance issues 

- Heterogeneous memory hierarchy 
-  Locality and bandwidth 

- Tiling for CUDA code generation 


