
11/1/12

1

L16: Introduction to
CUDA!

November 1, 2012!

CS4230

Administrative

Reminder: Project 4 due tomorrow at midnight
 See instructions on mailing list

Final Project proposal due November 20

CS4230

Outline

• Overview of the CUDA Programming Model for
NVIDIA systems

-  Presentation of basic syntax

• Simple working examples
•  See http://www.cs.utah.edu/~mhall/cs6963s09

• Architecture

• Execution Model

• Heterogeneous Memory Hierarchy
This lecture includes slides provided by:
 Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
 see http://courses.ece.uiuc.edu/ece498/al1/

 and Austin Robison (NVIDIA) CS4230

Reading
• David Kirk and Wen-mei Hwu manuscript or book

-  http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html

• CUDA Manual, particularly Chapters 2 and 4
(download from nvidia.com/cudazone)

• Nice series from Dr. Dobbs Journal by Rob Farber
-  http://www.ddj.com/cpp/207200659

CS4230

11/1/12

2

Today’s Lecture
• Goal is to enable writing CUDA programs right away

- Not efficient ones – need to explain architecture and
mapping for that

- Not correct ones (mostly shared memory, so similar to
OpenMP)

- Limited discussion of why these constructs are used or
comparison with other programming

- Limited discussion of how to use CUDA environment
- No discussion of how to debug.

CS4230

•  A quiet revolution and potential build-up
-  Calculation: 367 GFLOPS vs. 32 GFLOPS
-  Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
-  Until last year, programmed through graphics API

-  GPU in every PC and workstation – massive volume and
potential impact

G
FL

O
P

S

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

Why Massively Parallel Processor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

CS4230

What Programmer Expresses in CUDA

•  Computation partitioning (where does computation occur?)
- Declarations on functions __host__, __global__, __device__
- Mapping of thread programs to device: compute <<<gs, bs>>>(<args>)

• Data partitioning (where does data reside, who may access it and
how?)

•  Declarations on data __shared__, __device__, __constant__, …

• Data management and orchestration
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

•  Concurrency management
-  E.g. __synchthreads()

P

M

P

H
O

S
T

 (C
P

U
)

M D
E

V
IC

E
 (G

P
U

)

Interconnect between devices and memories

CS4230

Minimal Extensions to C + API
•  Declspecs

-  global, device,
shared, local,
constant

•  Keywords
-  threadIdx, blockIdx

•  Intrinsics
-  __syncthreads

•  Runtime API
-  Memory, symbol,
execution management

•  Function launch

__device__ float filter[N];

__global__ void convolve (float *image)
{

 __shared__ float region[M];
 ...

region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

CS4230

11/1/12

3

NVCC Compiler’s Role: Partition Code and
Compile for Device

mycode.cu

__device__ dfunc() {
 int ddata;
}

__global__ gfunc() {
 int gdata;
}

Main() { }
__host__ hfunc () {
 int hdata;
 <<<gfunc(g,b,m)>>>();
}

D
ev

ic
e

O
nl

y
In

te
rfa

ce

H
os

t O
nl

y

int main_data;
__shared__ int sdata;

Main() {}
__host__ hfunc () {
 int hdata;
<<<gfunc(g,b,m)>>>
();
}

__global__ gfunc() {
 int gdata;
}

Compiled by native
compiler: gcc, icc, cc

__shared__ sdata;

__device__ dfunc() {
 int ddata;
}

Compiled by nvcc
compiler

int main_data;

CS4230

CUDA Programming Model:
A Highly Multithreaded Coprocessor
•  The GPU is viewed as a compute device that:

-  Is a coprocessor to the CPU or host
-  Has its own DRAM (device memory)
-  Runs many threads in parallel

•  Data-parallel portions of an application are executed
on the device as kernels which run in parallel on many
threads

•  Differences between GPU and CPU threads
-  GPU threads are extremely lightweight

-  Very little creation overhead
-  GPU needs 1000s of threads for full efficiency

-  Multi-core CPU needs only a few

CS4230

Thread Batching: Grids and Blocks
•  A kernel is executed as a grid

of thread blocks
-  All threads share data

memory space

•  A thread block is a batch of
threads that can cooperate
with each other by:
-  Synchronizing their execution

-  For hazard-free shared
memory accesses

-  Efficiently sharing data through
a low latency shared memory

•  Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

CS4230

Block and Thread IDs

•  Threads and blocks have
IDs
-  So each thread can decide

what data to work on
-  Block ID: 1D or 2D

(blockIdx.x, blockIdx.y)
-  Thread ID: 1D, 2D, or 3D

(threadIdx.{x,y,z})

•  Simplifies memory
addressing when processing
multidimensional data
-  Image processing
-  Solving PDEs on volumes
-  …

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

CS4230

11/1/12

4

Simple working code example: Count 6
• Goal for this example:

-  Really simple but illustrative of key concepts
-  Fits in one file with simple compile command
-  Can absorb during lecture

• What does it do?
- Scan elements of array of numbers (any of 0 to 9)
- How many times does “6” appear?
- Array of 16 elements, each thread examines 4 elements, 1

block in grid, 1 grid

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data
distribution

CS4230

CUDA Pseudo-Code

MAIN PROGRAM:
Initialization
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

GLOBAL FUNCTION:
Thread scans subset of array elements
Call device function to compare with “6”
Compute local result

DEVICE FUNCTION:
Compare current element

and “6”
Return 1 if same, else 0

CS4230

Main Program: Preliminaries

MAIN PROGRAM:
Initialization
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

int main(int argc, char **argv)
{
 int *in_array, *out_array;
 …
}

CS4230

Main Program: Invoke Global Function

MAIN PROGRAM:
Initialization (OMIT)
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute

 (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
 int *in_array, *out_array;
 /* initialization */ …
 outer_compute(in_array, out_array);
 …
}

CS4230

11/1/12

5

Main Program: Calculate Output & Print Result

MAIN PROGRAM:
Initialization (OMIT)
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute

 (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
 int *in_array, *out_array;
 int sum = 0;
 /* initialization */ …
 outer_compute(in_array, out_array);
 for (int i=0; i<BLOCKSIZE; i++) {
 sum+=out_array[i];
 }
 printf (”Result = %d\n",sum);
}

CS4230

Host Function: Preliminaries & Allocation

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 …
}

CS4230

Host Function: Copy Data To/From Host

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 cudaMemcpy(d_in_array, h_in_array,
 SIZE*sizeof(int),
 cudaMemcpyHostToDevice);

 … do computation ...
 cudaMemcpy(h_out_array,d_out_array,

 BLOCKSIZE*sizeof(int),
 cudaMemcpyDeviceToHost);

}

CS4230

Host Function: Setup & Call Global Function

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 cudaMemcpy(d_in_array, h_in_array,
 SIZE*sizeof(int),
 cudaMemcpyHostToDevice);

compute<<<(1,BLOCKSIZE)>>> (d_in_array,
d_out_array);

cudaThreadSynchronize();
 cudaMemcpy(h_out_array, d_out_array,

 BLOCKSIZE*sizeof(int),
 cudaMemcpyDeviceToHost);

}
CS4230

11/1/12

6

Global Function

GLOBAL FUNCTION:
Thread scans subset of array

elements
Call device function to compare

with “6”
Compute local result

__global__ void compute(int
*d_in,int *d_out) {

 d_out[threadIdx.x] = 0;
 for (int i=0; i<SIZE/BLOCKSIZE;

 i++)
 {
 int val = d_in[i*BLOCKSIZE +

threadIdx.x];
 d_out[threadIdx.x] += compare

(val, 6);
 }
}

CS4230

Device Function

DEVICE FUNCTION:
Compare current element

and “6”
Return 1 if same, else 0

__device__ int compare
(int a, int b) {

 if (a == b) return 1;
 return 0;
}

CS4230

Reductions

• This type of computation is called a parallel reduction
- Operation is applied to large data structure
-  Computed result represents the aggregate solution across the large

data structure
-  Large data structure computed result (perhaps single number)
[dimensionality reduced]

• Why might parallel reductions be well-suited to GPUs?
• What if we tried to compute the final sum on the GPUs?

CS4230

Standard Parallel Construct
• Sometimes called “embarassingly parallel” or

“pleasingly parallel”
• Each thread is completely independent of the others
• Final result copied to CPU
• Another example, adding two matrices:

- A more careful examination of decomposing computation
into grids and thread blocks

CS4230

11/1/12

7

Summary of Lecture
• Introduction to CUDA
• Essentially, a few extensions to C + API supporting

heterogeneous data-parallel CPU+GPU execution
-  Computation partitioning
- Data partititioning (parts of this implied by decomposition into

threads)
- Data organization and management
-  Concurrency management

• Compiler nvcc takes as input a .cu program and produces
-  C Code for host processor (CPU), compiled by native C compiler
-  Code for device processor (GPU), compiled by nvcc compiler

• Two examples
-  Parallel reduction
-  Embarassingly/Pleasingly parallel computation (your assignment)

CS4230

