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L16: Introduction to 
CUDA!

November 1, 2012!

CS4230 

Administrative 

Reminder: Project 4 due tomorrow at midnight 
 See instructions on mailing list 

Final Project proposal due November 20 

CS4230 

Outline 

• Overview of the CUDA Programming Model for 
NVIDIA systems 

-  Presentation of basic syntax 

• Simple working examples 
•  See http://www.cs.utah.edu/~mhall/cs6963s09 

• Architecture 

• Execution Model 

• Heterogeneous Memory Hierarchy 
This lecture includes slides provided by: 
   Wen-mei Hwu (UIUC) and David Kirk (NVIDIA) 
   see http://courses.ece.uiuc.edu/ece498/al1/ 

   and Austin Robison (NVIDIA) CS4230 

Reading 
• David Kirk and Wen-mei Hwu manuscript or book 

-  http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html 

• CUDA Manual, particularly Chapters 2 and 4 
(download from nvidia.com/cudazone) 

• Nice series from Dr. Dobbs Journal by Rob Farber 
-  http://www.ddj.com/cpp/207200659 

CS4230 
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Today’s Lecture 
• Goal is to enable writing CUDA programs right away 

- Not efficient ones – need to explain architecture and 
mapping for that  

- Not correct ones (mostly shared memory, so similar to 
OpenMP) 

- Limited discussion of why these constructs are used or 
comparison with other programming 

- Limited discussion of how to use CUDA environment 
- No discussion of how to debug.   

CS4230 

•  A quiet revolution and potential build-up 
-  Calculation: 367 GFLOPS vs. 32 GFLOPS 
-  Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s 
-  Until last year, programmed through graphics API 

-  GPU in every PC and workstation – massive volume and 
potential impact 
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G80 = GeForce 8800 GTX 

G71 = GeForce 7900 GTX 

G70 = GeForce 7800 GTX 

NV40 = GeForce 6800 Ultra 

NV35 = GeForce FX 5950 Ultra 

NV30 = GeForce FX 5800 

Why Massively Parallel Processor 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 
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What Programmer Expresses in CUDA  

•  Computation partitioning (where does computation occur?) 
- Declarations on functions __host__, __global__, __device__ 
- Mapping of thread programs to device: compute <<<gs, bs>>>(<args>) 

• Data partitioning (where does data reside, who may access it and 
how?) 

•  Declarations on data __shared__, __device__, __constant__, … 

• Data management and orchestration 
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost) 

•  Concurrency management 
-  E.g. __synchthreads() 
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Interconnect between devices and memories 
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Minimal Extensions to C + API 
•  Declspecs 

-  global, device, 
shared, local, 
constant 

•  Keywords 
-  threadIdx, blockIdx 

•  Intrinsics 
-  __syncthreads 

•  Runtime API 
-  Memory, symbol, 
execution management 

•  Function launch 

__device__ float filter[N];  

__global__ void convolve (float *image)  
{ 

  __shared__ float region[M]; 
  ...  

region[threadIdx] = image[i];  

  __syncthreads()   
  ...  

  image[j] = result; 
} 

// Allocate GPU memory 
void *myimage = cudaMalloc(bytes) 

// 100 blocks, 10 threads per block 
convolve<<<100, 10>>> (myimage); 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 
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NVCC Compiler’s Role: Partition Code and 
Compile for Device    

mycode.cu 

__device__ dfunc() { 
   int ddata; 
} 

__global__ gfunc() { 
   int gdata; 
} 

Main() { } 
__host__  hfunc () { 
   int hdata; 
 <<<gfunc(g,b,m)>>>(); 
} 
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int main_data; 
__shared__  int sdata;  

Main() {} 
__host__  hfunc () { 
   int hdata;       
<<<gfunc(g,b,m)>>>
(); 
} 

__global__ gfunc() { 
   int gdata; 
} 

Compiled by native 
compiler: gcc, icc, cc 

__shared__ sdata;  

__device__ dfunc() { 
   int ddata; 
} 

Compiled by nvcc 
compiler 

int main_data; 
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CUDA Programming Model: 
A Highly Multithreaded Coprocessor 
•  The GPU is viewed as a compute device that: 

-  Is a coprocessor to the CPU or host 
-  Has its own DRAM (device memory) 
-  Runs many threads in parallel 

•  Data-parallel portions of an application are executed 
on the device as kernels which run in parallel on many 
threads 

•  Differences between GPU and CPU threads  
-  GPU threads are extremely lightweight 

-  Very little creation overhead 
-  GPU needs 1000s of threads for full efficiency 

-  Multi-core CPU needs only a few 
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Thread Batching: Grids and Blocks 
•  A kernel is executed as a grid 

of thread blocks 
-  All threads share data 

memory space 

•  A thread block is a batch of 
threads that can cooperate 
with each other by: 
-  Synchronizing their execution 

-  For hazard-free shared 
memory accesses 

-  Efficiently sharing data through 
a low latency shared memory 

•  Two threads from two 
different blocks cannot 
cooperate 
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Courtesy: NVIDIA 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
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Block and Thread IDs 

•  Threads and blocks have 
IDs 
-  So each thread can decide 

what data to work on 
-  Block ID: 1D or 2D 

(blockIdx.x, blockIdx.y) 
-  Thread ID: 1D, 2D, or 3D 

(threadIdx.{x,y,z})  

•  Simplifies memory 
addressing when processing 
multidimensional data 
-  Image processing 
-  Solving PDEs on volumes 
-  … 

Device 
Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 

Courtesy: NDVIA 
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Simple working code example: Count 6 
• Goal for this example: 

-  Really simple but illustrative of key concepts 
-  Fits in one file with simple compile command 
-  Can absorb during lecture 

• What does it do? 
- Scan elements of array of numbers (any of 0 to 9) 
- How many times does “6” appear? 
- Array of 16 elements, each thread examines 4 elements, 1 

block in grid, 1 grid 

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2 

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12 
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13 
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14 
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15 

} Known as a 
cyclic data  
distribution 
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CUDA Pseudo-Code 

MAIN PROGRAM: 
Initialization 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

HOST FUNCTION: 
Allocate memory on device for 

copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Synchronize after completion 
Copy device output to host 

GLOBAL FUNCTION: 
Thread scans subset of array elements 
Call device function to compare with “6” 
Compute local result 

DEVICE FUNCTION: 
Compare current element  

and “6” 
Return 1 if same, else 0 

CS4230 

Main Program: Preliminaries 

MAIN PROGRAM: 
Initialization 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

#include <stdio.h> 
#define SIZE 16 
#define BLOCKSIZE 4 

int main(int argc, char **argv) 
{ 
  int *in_array, *out_array; 
  … 
} 

CS4230 

Main Program: Invoke Global Function 

MAIN PROGRAM: 
Initialization (OMIT) 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

#include <stdio.h> 
#define SIZE 16 
#define BLOCKSIZE 4 
__host__ void outer_compute

 (int *in_arr, int *out_arr); 
int main(int argc, char **argv) 
{ 
  int *in_array, *out_array; 
  /* initialization */ … 
  outer_compute(in_array, out_array); 
   … 
} 

CS4230 
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Main Program: Calculate Output & Print Result 

MAIN PROGRAM: 
Initialization (OMIT) 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

#include <stdio.h> 
#define SIZE 16 
#define BLOCKSIZE 4 
__host__ void outer_compute

 (int *in_arr, int *out_arr); 
int main(int argc, char **argv) 
{ 
  int *in_array, *out_array; 
  int sum = 0; 
  /* initialization */ … 
  outer_compute(in_array, out_array); 
  for (int i=0; i<BLOCKSIZE; i++) { 
    sum+=out_array[i]; 
  } 
  printf (”Result = %d\n",sum); 
} 
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Host Function: Preliminaries & Allocation 

HOST FUNCTION: 
Allocate memory on device for 

copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Synchronize after completion 
Copy device output to host 

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) { 

   int *d_in_array, *d_out_array; 

   cudaMalloc((void **) &d_in_array, 
 SIZE*sizeof(int)); 

   cudaMalloc((void **) &d_out_array, 
 BLOCKSIZE*sizeof(int)); 

   … 
} 
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Host Function: Copy Data To/From Host 

HOST FUNCTION: 
Allocate memory on device for 

copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Synchronize after completion 
Copy device output to host 

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) { 

   int *d_in_array, *d_out_array; 

   cudaMalloc((void **) &d_in_array, 
 SIZE*sizeof(int)); 

   cudaMalloc((void **) &d_out_array, 
 BLOCKSIZE*sizeof(int)); 

   cudaMemcpy(d_in_array, h_in_array,   
 SIZE*sizeof(int), 
 cudaMemcpyHostToDevice); 

   … do computation ... 
   cudaMemcpy(h_out_array,d_out_array, 

 BLOCKSIZE*sizeof(int), 
 cudaMemcpyDeviceToHost); 

} 

CS4230 

Host Function: Setup & Call Global Function 

HOST FUNCTION: 
Allocate memory on device for 

copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Synchronize after completion 
Copy device output to host 

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) { 

   int *d_in_array, *d_out_array; 

   cudaMalloc((void **) &d_in_array, 
 SIZE*sizeof(int)); 

   cudaMalloc((void **) &d_out_array, 
 BLOCKSIZE*sizeof(int)); 

   cudaMemcpy(d_in_array, h_in_array,   
 SIZE*sizeof(int), 
 cudaMemcpyHostToDevice); 

compute<<<(1,BLOCKSIZE)>>> (d_in_array, 
d_out_array); 

cudaThreadSynchronize(); 
   cudaMemcpy(h_out_array, d_out_array, 

 BLOCKSIZE*sizeof(int), 
 cudaMemcpyDeviceToHost); 

} 
CS4230 
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Global Function 

GLOBAL FUNCTION: 
Thread scans subset of array 

elements 
Call device function to compare 

with “6” 
Compute local result 

__global__ void compute(int 
*d_in,int *d_out) { 

  d_out[threadIdx.x] = 0; 
  for (int i=0; i<SIZE/BLOCKSIZE; 

 i++)  
   { 
      int val = d_in[i*BLOCKSIZE + 

threadIdx.x];   
     d_out[threadIdx.x] += compare

(val, 6); 
   } 
} 

CS4230 

Device Function 

DEVICE FUNCTION: 
Compare current element  

and “6” 
Return 1 if same, else 0 

__device__ int compare
(int a, int b) { 

  if (a == b) return 1; 
  return 0; 
} 

CS4230 

Reductions 

• This type of computation is called a parallel reduction 
- Operation is applied to large data structure 
-  Computed result represents the aggregate solution across the large 

data structure 
-  Large data structure  computed result (perhaps single number) 
[dimensionality reduced] 

• Why might parallel reductions be well-suited to GPUs? 
• What if we tried to compute the final sum on the GPUs?  

CS4230 

Standard Parallel Construct 
• Sometimes called “embarassingly parallel” or 

“pleasingly parallel” 
• Each thread is completely independent of the others 
• Final result copied to CPU 
• Another example, adding two matrices: 

- A more careful examination of decomposing computation 
into grids and thread blocks 
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Summary of Lecture 
• Introduction to CUDA 
• Essentially, a few extensions to C + API supporting 

heterogeneous data-parallel CPU+GPU execution 
-  Computation partitioning 
- Data partititioning (parts of this implied by decomposition into 

threads) 
- Data organization and management 
-  Concurrency management 

• Compiler nvcc takes as input a .cu program and produces 
-  C Code for host processor (CPU), compiled by native C compiler 
-  Code for device processor (GPU), compiled by nvcc compiler 

• Two examples 
-  Parallel reduction 
-  Embarassingly/Pleasingly parallel computation (your assignment) 
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