L16: Introduction to
CUDA

November 1, 2012

CS4230

Administrative

Reminder: Project 4 due tomorrow at midnight
See instructions on mailing list
Final Project proposal due November 20

CS4230 THE
UNIVERSITY
UOF UTAH

Outline

- Overview of the CUDA Programming Model for
NVIDIA systems

- Presentation of basic syntax
+ Simple working examples

+ See http://www.cs.utah.edu/~mhall/cs6963s09
+ Architecture
+ Execution Model

* Heterogeneous Memory Hierarchy
This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.uiuc.edu/ece498/al1/

Reading

and Austin Robison (N\ABI®)0

THE
u UNIVERSITY
OF UTAH

+ David Kirk and Wen-mei Hwu manuscript or book
- http://www.toodoc.com/CUDA-textbook-by-David-Kirk-
from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html

+ CUDA Manual, particularly Chapters 2 and 4
(download from nvidia.com/cudazone)

* Nice series from Dr. Dobbs Journal by Rob Farber
- http://www.ddj.com/cpp/207200659

CS4230 THE
UNIVERSITY
UOF UTAH

11/1/12

Today's Lecture

* Goal is to enable writing CUDA programs right away

- Not efficient ones - need to explain architecture and
mapping for that

- Not correct ones (mostly shared memory, so similar to
OpenMP)

- Limited discussion of why these constructs are used or
comparison with other programming

- Limited discussion of how to use CUDA environment
- No discussion of how to debug.

€84230 u‘l}‘;\IIVERSITY
OF UTAH

Why Massively Parallel Processor

A quiet revolution and potential build-up
- Calculation: 367 GFLOPS vs. 32 GFLOPS
- Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
- Until last year, programmed through graphics APT

[%2]
o
(e}
=
TR
[}

3.0 GHz
NV35 Intel Core2 Duo
D

)
Jan Jun May Nov Mar Nov

2003 2 2003 2006

- GPU in every PC and workstation - massive volume and
potential impact

© David Kirk/NVIDIA and Wen-mei W. Hwu, 20054230 u

THE
UNIVERSITY

ECE 498AL, University of lllinois, Urbana-Champaign
v i OF UTAH

What Programmer Expresses in CUDA

n Interconnect between devices and memories -

o

+ Computation partitioning (where does computation occur?)
- Declarations on functions __host__, __global__, __device___
- Mapping of thread programs to device: compute ««<gs, bs>>>(<args>)

HOST (CPU
DEVICE (GPU

. Ea-rg))par"ri‘rioning (where does data reside, who may access it and
ow?

+ Declarations on data __shared__, __device_ , _ constant__, ..

+ Data management and orchestration
+ Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

THE
u UNIVERSITY
OF UTAH

- Concurrency management
- E.g. __synchthreads
9. —synchthreads(). o\ 30

Minimal Extensions to C + APT

- Declspecs
- global, device,

device float filter([N];

shared. local __global__ void convolve (float *image)
constant !
__shared__ float region([M];
+ Keywords
- threadIdx, blockIdx ... (tnreadrax) - image(il;
* Intrinsics syncthreads ()
- __syncthreads

+ Runtime APT

- Memory, symbol // Bllocate GPU memory
execution management void “myimage = cudatialloc (bytes)
// 100 blocks, 10 threads per block

+ Function launch

convolve<<<100, 10>>> (myimage);

THE
u UNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. ku%#so
ECE 498AL, University of lllinois, Urbana-Champaign

11/1/12

NVCC Compiler's Role: Parfition Code and
Compile for Device

mycode.cu Compiled by native Compiled by nvce
iler: i compiler
int main_data; compiler: gcg, icc, cc P
__shared__ int sdata;
>
Main() { } =3 .
~ host__ hfunc () { 9 int main_data; _ shared__ sdata;
int hdata; 3 :
Main
<<<gfunc(g,b,m)>>>(); * ho(s)t{} hfunc () {
} “int hd;a;
3 <<<gfunc(g,b,m)>>>
% .
£ }
_ device__ dfunc() { > __device__ dfunc() {
int ddata; 5 int ddata;
} 8 }
=
o)
[a]
CS4230

THE
u UNIVERSITY
OF UTAH

CUDA Programming Model:

A Highly Multithreaded Coprocessor

+ The GPU is viewed as a compute device that:
- Isacoprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel

Data-parallel portions of an uﬁphcahon are executed
on the device as kernels which run in parallel on many
threads

+ Differences between GPU and CPU threads
- GPU threads are extremely lightweight
- Very little creation overhead
- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

CS4230 UUT\’[VERS[TY

OF UTAH

Thread Batching: 6rids and Blocks

A kernel is executed as a grid

of thread blocks Host Device

- All threads share data Grid 1

memory space |
A thread block is a batch of
threads that can cooperate m.-

with each other by:

- Synchronizing their execution s endi
- For hazard-free shared Kernel —
memory accesses 2 K
- Efficiently sharing data through '!—\ 1 !—\
a low latency shared memory Block (1, 1)

+ Two threads from two
different blocks cannot
cooperate

Courtesy: NVIDI

© David Kirk/NVIDIA and Wen-mei W. HWUCQ%&?ZSO
ECE 498AL, University of lllinois, Urbana-Champaign

Block and Thread IDs

+ Threads and blocks have Devics
IDs Grid 1

- So each thread can decide w w w
what data to work on

- Block ID: 1D or 2D Elock Block Block
(blockTdx.x, blockIdx.y) “' 2 M Led

- Thread ID: 1D, 2D, or 3D
(threadIdx.{x,y,z}) Block (1,1)

+ Simplifies memory

addressing when processing =

multidimensional data
- Image processing
- Solving PDEs on volumes

Courtesy: NDVIA

David Kirk/NVIDIA and Wen-mei W. Hwu(562230
ECE 498AL, University of llinois, Urbana-Champaign

T
u UNIVERSITY
OF UTAH

11/1/12

Simple working code example: Count 6

* Goal for this example:
- Really simple but illustrative of key concepts
- Fits in one file with simple compile command
- Can absorb during lecture

* What does it do?
- Scan elements of array of humbers (any of 0 to 9)
- How many times does "6" appear?

- Array of 16 elements, each thread examines 4 elements, 1
block in grid, 1 grid

006600000000000

threadldx.x = 0 examines in_array elements 0, 4, 8, 12

threadldx.x = 1 examines in_array elements 1, 5, 9, 13 Knoyvn asa
cyclic data
threadldx.x = 3 examines in_array elements 3, 7, 11, 15 distribution
CS4230 THE
RSIT!
1 *

CUDA Pseudo-Code
MAIN PROGRAM:

Initialization

+ Allocate memor*_?l on host for
input and outpu

) ﬁiﬂ?ﬁ:ﬁ&dm numbers fo Set up grid/block

Call host function

Calculate final output from
per-thread output

Print result

GLOBAL FUNCTION:

Thread scans subset of array elements

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Call global function
Synchronize after completion
Copy device output to host

DEVICE FUNCTION:

Compare, current element
and "6"

Call device function to compare with "6"

Return 1if same, else O
Compute local result

CS4230 u'{}'&[vmsm
OF UTAH

Main Program: Preliminaries

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

MAIN PROGRAM:

Initialization

+ Allocate memor]y on host for
input and outpu

: ﬁ%ﬂ‘?g;ﬁa“ydm numbers to int main(int argc, char **argv)

Call host function {

Calculate final output from
per-thread output

Print result }

int *in_array, *out_array;

CS4230

THE
u UNIVERSITY
OF UTAH

Main Program: Invoke Global Function

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

__host__ void outer_compute
“(int *in_arr, int *out_arr);

MAIN PROGRAM:

Initialization (OMIT)

+ Allocate memor]y on host for
input and outpu

. Assi?n random numbers to o
inpuf array int main(int argc, char **argv)

Call host function {

Calculate final output from
per-thread output

Print result

int *in_array, *out_array;
/* initialization */ ...
ouTer_compufe(in_ar‘r‘ay, ouf_ar'r‘ay);

CS4230

THE
u UNIVERSITY
OF UTAH

11/1/12

Main Program: Calculate Output & Print Result

MAIN PROGRAM: #include <stdio.h>

L #define SIZE 16
Initialization (OMIT) #define BLOCKSIZE 4

’ ﬂgﬁi“;ﬁdﬁiﬁ‘;ﬂ on host for __host___ void outer_compute
. int *in_arr, int *out_arr);
. Assggn random numbers to o
inpuf array int main(int argc, char **argv)
Call host function {

int *in_array, *out_array;

int sum = O;

/* initialization */ ...

ou’rer_compu’re(in_ur‘my, ouT_urray):

for (int i=0; i<BLOCKSIZE; i++) {
sum+=out_array[i].

Calculate final output from
per-thread output

Print result

printf (“Result = %d\n",sum);

CS4230 THE
u UNIVERSITY
OF UTAH

Host Function: Preliminaries & Allocation
HOST FUNCTION: host__ void outer_compute (int

“*h_in_array, int *h_out_array) {
Allocate memory on device for
copy of input and output int *d_in_array, *d_out_array;
Copy input to device T -7
Set up grid/block

Call global function

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,

Synchronize after completion BLOCKSIZE*sizeot (inf));

Copy device output to host

CS4230 THE
u UNIVERSITY
OF UTAH

Host Function: Copy Data To/From Host
: host___ void outer_compute (int
HOST FUNCTION: “*h_in_array, int *h__ou’rfarr‘a(y){
Allocate memory on device for int *d_in_array, *d_out_array;
copy of input and output - -

Copy input to device cudaMalloc((void **) &d_in_array,
Set up grid/block SIZE*sizeof(int));
cudaMalloc%void **) &d_out_array,
BLOCKSIZE*sizeof(int));
cudaMemch(d_in array, h_in_array,
SIZE*sizeof(int), ;
cudaMemcpyHost ToDevice);

... do computation ...
cudaMemcpy(h_out_array,d_out_array,
BLOEI)(IgI'ZE*Qz;eo 1(@ Y
cudaMemcpyDevice ToHost);

Call global function
Synchronize after completion

Copy device output to host

CS4230

T
u UNIVERSITY
OF UTAH

Host Function: Setup & Call Global Function
HOST FUNCTION: st void outer conpute (1

Allocate memory on device for int *d_in_array, *d_out_array;
copy of input and output - -

Copy input fo device cudaMalloc((void **) &d_in_array,

Set up grid/block SIZE*sizeof(int));
: cudaMalloc((void **) &d_out_array,
Call global function BLOCSESIZE*s)izeé?(inﬂ); Y
Synchronize after completion cudaMemc l/(d_in array, h_in_array,
SIZE*sizeof(int)

Copy device output to host cudaMemcpyHost ToDevice);

compute<<«(1,BLOCKSIZE)>>> (d_in_array,
d_out_array);

cudaThreadSynchronize():

cudaMemcgzg\ out_array, d_out_array,

BLO I_ZE*sizeo{gnﬁ,
cudaMemcpyDevice ToHost);

}

CS4230 THE
u UNIVERSITY
OF UTAH

11/1/12

Global Function

Device Function

GLOBAL FUNCTION: lobal__ votd compute(int
LOBAL F b SPurel DEVICE FUNCTION: device__ int compare
Thread scans subset of array “(intq, infb){
elements d_ou‘r[‘rhr'eadIdx.x] =0 Comgq‘%q,currenf element if (a == b) return 1:
Call device function to compare for (int i=0; i<SIZE/BLOCKSIZE:; an ’
with "6" i++) Return 1 if same, else O return O;
Compurte local result { }
int val = d_in[i*BLOCKSIZE +
threadIdx.x]:
d_out[threadIdx.x] += compare
(val, 6);
}
}
C84230 UG‘IE\I[VERSITY €84230 UG‘IE\I[VERSITY
OF UTAH OF UTAH
Reductions Standard Parallel Construct

* This type of computation is called a parallel reduction
- Operation is applied to large data structure

- Computed result represents the aggregate solution across the large
data structure

- Large data structure < computed result (perhaps single number)
[dimensionality reduced]

* Why might parallel reductions be well-suited to GPUs?
* What if we tried to compute the final sum on the GPUs?

CS4230 THE
UNIVERSITY
UOF UTAH

* Somefimes called "embarassingly parallel” or

* Each thread is completely independent of the others
* Final result copied to CPU
* Another example, adding two matrices:

“pleasingly parallel

- A more careful examination of decomposing computation
into grids and thread blocks

CS4230 THE
UNIVERSITY
UOF UTAH

11/1/12

11/1/12

Summary of Lecture
+ Introduction o CUDA
- Essentially, a few extensions to C + APT supporting
heterogeneous data-parallel CPU+GPU execution
- Computation partitioning

- Data partititioning (parts of this implied by decomposition into
threads)

- Data organization and management
- Concurrency management

+ Compiler nvcc takes as input a .cu program and produces
- C Code for host processor (CPU), compiled by native C compiler
- Code for device processor (GPU), compiled by nvcc compiler

+ Two examples
- Parallel reduction
- Embarassingly/Pleasingly parallel computation (your assignment)

€s4230 ua‘liI[VERSITY
OF UTAH

