L15: Putting it together:
N-body (Ch. 6)

October 30, 2012

Outline

* Review MPI Communication
- Blocking
- Non-Blocking
- One-Sided
- Point-to-Point vs. Collective
+ Chapter 6 shows two algor‘i'rhms (N-body and Tree

Search) written in the Three programming models
(OpenMP, Pthreads, MPT)

- How to approach parallelization of an entire algorithm
(Foster's methodology is used in the book)

- What do you have fo worry about that is different for each
programming model?

THE
u UNIVERSITY
OF UTAH

Review p2p example: 2D relaxation

Replaces each interior value by the average of its
four nearest neighbors.

1.0[{00|00|00 00|00

Sequential code: B ool 0ol oo 0o IO

for G=1; i<n-1; i++)
for (=15 j<n-1; j++) 10| 00| 00|00 |00 |00
bli,jl = (ali-1l[jl+alillj-1]1+
ali+1][jl+alil[j+11)/4.0; 10]00]00]00)00 00

10(00| 00|00 |00 |00
1.0({00|00|00 00|00

[interior value
DBoundary value

THE
UUN[VERS[TY
OF UTAH

10/25/2012 CS4230
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPT code, main loop of 2D SOR computation
3 #define Right (Cols-1)
g
7 #define SouthPE(i) ((i)+Cols)
8 ddefine EastPE(i) ((1)+1)
9 ddefine WestPE(i) ((1)-1)
105 if(row !=Top) /* Send North */
106 {
o
111 if(col !=Right) /* Send East */
114 {
3 mmearmenmmmr
H
17 MPI_Send(buffer, Height-2, MPI_FLOAT,
118 EastPE(myID), tag, MPI_COMM WORLD);
19 }
=
123 MPI_Send(sval[Height-2](1], Width-2, MPI_FLOAT,
124 SouthPE(myID), tag, MPI_COMM_WORLD);
125 }

10/25/2012 CS4230
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THE
UUN[VERS[TY
OF UTAH

11/1/12

MPT code, main loop of 2D SOR computation, cont,

129 for(ie1; i<Height-1; i++)
130
131 buffer(i-11=val(i](11;
132
133 MPI_Send(butfer, Height-2, MPI_FLOAT,
130 WestPE(myID), tag, MPI_COMM WORLD);
135
136
137 /e
138 - Receive messages
139 -
100 af(~Top) /% Receive from North +/
141 ¢
182 MPI_Recv(eval(0](1], Width-2, MPI_FLOAT,
143 NorthPE(myID), tag, MPI_COMM_WORLD, &status);
s
145
146 if(col i-Right) /% m Bast +/
147
148 MPI_Re: Height-2, MPI_FLOAT,
149 wID), tag, MPI_COMM_WORLD, &)
150 for(i=1; i<Height-1; i+e)
151
152 val(i](width-1)=buffer(i-1];
153 »
11
155
156 if(row 1=Bottom) /% Receive from South */
157
158 MPI_Recv(eval(0)(Height-1], Width-2, MPI_FLOAT,
159 SOUthPE(myID), tag, MPI_COMM_WORLD, &status):
160
161
162 if(col i1-teft) /e R vest +/
163 ¢
164 MPI_Recv(sbufer, Height-2, MPI_FLOAT,
165 WestPE(myID), tag, MPI_COMM_WORLD, &)
166 for(i=1; i<Hoeight-1; i++)
167 «
168 val{i](0)=butter(i-11;
169
170
171
172 delta=0.0; /* Calculate average, delta for all points */
173 for(im1; i<Height-1;
178«
for(d=1; j<uidth-1; J++)

he
10/25/2012 e
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley u 8';’ B/‘IEARI-%[TY

MPT code, main loop of 2D SOR computation, cont,

177 average=(val[i-1][j]+val[i][3+1]+

178 val[i+1][j]+val[i][j-1])/4;

179 delta=Max(delta, Abs(average-val[i][j]));
180 new[i][j]=average;

181 }

182 3

183

184 /* Find maximum diff */

185 MPI_Reduce(&delta, &globalDelta, 1, MPI_FLOAT, MPI_MIN,
186 RootProcess, MPI_COMM_WORLD) ;

187 swap(val, new);

188 } while(globalDelta < THRESHOLD);

10/25/2012 CS4230 THE
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley u 8';’ B/‘IEARI-%[TY

Question: Does this lead to deadlock?
* No! Why not?

+ Even though communication is blocking,

- Send returns when MPT library on receiving end
acknowledges that data has been received

- The receiving process may not yet have received the data
- So, a sequence of blocking Sends will not block

+ What about receives?

- Receiving process must wait until data arrives before
proceeding

- A sequence of blocking receives must be received in order

11/09/10

THE
UUN[VERS[TY
OF UTAH

Foster's methodology (Chapter 2)

1. Partitioning: divide the computation to be performed and the
data operated on by the computation into small tasks.

The focus here should be on identifying tasks that can be
executed in parallel.

2. Communication: determine what communication needs to be
carried out among the tasks identified in the previous step.

3. Agglomeration or aggregation: combine tasks and
communications identified in the first step into larger tasks.

For example, if task A must be executed before task B can
be executed, it may make sense to aggregate them into a
single composite task.

4. Mapping: assigh the composite tasks identified in the previous
step to processes/threads.

This should be done so that communication is minimized, and
each process/thread gets roughly the same amount of work.

THE
UUN[VERS[TY
OF UTAH

Copyright © 2010, Elsevier Inc. All rights Reserved

11/1/12

The n-body problem

+ Find the positions and velocities of a collection of
interacting particles over a period of time.

+ An n-body solver is a program that finds the solution
to an n-body problem by Simulating the behavior of
the particles.

Positionme o Position
It
time x

N-body solver

mass
VeloCityyime x

VeloCityyime o

Copyright © 2010, Elsevier Inc. All rights Reserved u

THE
UNIVERSITY
OF UTAH

Example N-Body: Material Point Method (MPM)
i

1. Lagrangian material points carry all J o @
state data (position, velocity, stress, etc.)

'
@14 o

2. Overlying mesh defined

3. Particle state projected to mesh, e.g.:

5= 2 Sumb [3, Sty ®

4. Conservation of momentum solved
on mesh giving updated mesh velocity @
and (in principal) position.

Stress at particles computed based
on gradient of the mesh velocity.

5. Particle positions/velocities updated from J
mesh solution. @

6. Discard deformed mesh. —
Define new mesh and repeat @

10 Schlumberger UU‘Euvmsm(
OF UTAH

Calculate Force as a function of mass and positions

(6.1)

Force between two particles
Gmgmy,
4 3 [S(/(r) - Sk(f)]

fu(r) = —— Mk
0 [sq (1) —si(1)|

Total force on a particle (6.2)

n—1 n—1

F ()= Y fu=—Gm, Y —[s, (1) —s,(1)]
k= k

=0 =0 |5q(t)*sk(t)lV
k#q k#q

Copyright © 2010, Elsevier Inc. All rights Reserved

Calculate acceleration

(6.3)

n—1
sy(1)=-G Y
q
720 [8q(1) =s;(1)
J#q

m_/'

|3 [Sf/(t) - S./‘(’)]

t=0,Ar,2Ar,... ., TAt

Copyright © 2010, Elsevier Inc. All rights Reserved

11/1/12

Serial pseudo-code: calculates position of

particles at each time step

Get input data:
for each timestep {
if (timestep output) Print positions and velocities of particles:
for each particle g
Compute total force on q:
for each particle g
Compute position and velocity of q:
}

Print positions and velocities of particles:

THE
UNIVERSITY

Copyright © 2010, Elsevier Inc. All rights Reserved u
OF UTAH

Computation of the forces: Basic Algorithm

For all pairs (except <q,q>) compute Total Force

for each particle g {
for each particle k != g {

x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[q][Y] — pos[k][Y]:
dist = sqrt(x_diff+x_diff + y_diffsy_diff);
dist_cubed = dist*distxdist:
forces[q][X] —= G#masses[q]+masses[k]/dist_cubed % x_diff:
forces[q][Y] —= G¢masses[q|+masses[k]|/dist_cubed # y_diff:

THE
UNIVERSITY

Copyright © 2010, Elsevier Inc. All rights Reserved u
OF UTAH

Computation of the forces: Reduced Algorithm

Reduce calculation of Total Force, capitalizing on f, = -f,,
Compute half the pairs

for each particle g
forces[qg] = 0:
for each particle g {
for each particle k > g {
x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[q][Y] — pos[k][Y]:
dist = sqrt(x_diffsx_diff + y_diffxy_diff);
dist_cubed = distsdistsdist;
force_gk[X] = Gxmasses[q]*masses|[k]/dist_cubed * x_diff;
force_gk|Y] = Gmasses|[q|+masses|k]/dist_cubed * y_diff

forces[q][X] += force_gk[X]:
forces[q][Y] += force_gk[Y]:
forces|[k]|[X] —= force_gk[X]:
forces[k]|[Y] —= force_gk[Y]:

Compute position using Euler's Method

Copyright © 2010, Elsevier Inc. All rights Reserved

THE
u UNIVERSITY
OF UTAH

Use tangent to compute position at later time step

to T ty+2At T

to+At to+3At

Copyright © 2010, Elsevier Inc. All rights Reserved

THE
u UNIVERSITY
OF UTAH

11/1/12

OpenMP parallelization: Basic Algorithm

For all pairs (except <q,q>) compute Total Force
Parallelization? Scheduling?

for each particle g {
for each particle k != g {
x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[q][Y] — pos[k][Y]:
dist = sqrt(x_diff+x_diff + y_diff+y_diff):
dist_cubed = distxdistxdist;

forces[q][X] —= G#masses[q]+masses[k]/dist_cubed % x_diff:
forces[q][Y] —= Gxmasses|[q]*masses|[k]/dist_cubed % y_diff;
}
}
Copyright © 2010, Elsevier Inc. All rights Reserved u'{jﬁ[vms[w
OF UTAH

Computation of the forces: Reduced Algorithm

Reduce calculation of Total Force, capitalizing on f = -f
Compute half the pairs
Parallelization? Scheduling?

for each particle g

forces[q] = 0:

for each particle q {

}

Copyright © 2010, Elsevier Inc. All rights Reserved u

for each particle k > q {
x_diff = pos[q][X] — pos[k][X];
y_diff = pos[ql[¥] — pos[k][Y]:
dist = sqrt(x_diffsx diff + y_diffsy_diff);
dist_cubed = distsdistxdist;
force_gk[X] = G#masses[q|+#masses[k]/dist_cubed * x_diff;
force_qk[Y] = G#masses[q]+masses[k]/dist_cubed * y_diff
forces[q][X] += force_gk[X]:
forces|[q][Y] += force_gk[Y]:
forces[k]|[X] —= force_gk[X]:
forces[k][Y] —= force_gk[Y]:

}

THE
UNIVERSITY
OF UTAH

Other topics on OpenMP parallelization

Data structure choice — group together in structure or
separate arrays?

Thread creation

Alternative synchronization (reduced method)
Private data (reduced method)

Nowait

1/0 (single)

THE
UUN[VERS[TY
OF UTAH

What's different with Pthreads

* Must write more code to do basic OpenMP things:

+ Create threads, pass parameters, determine
number and mapping of iterations and initiate
parallel loop”
+ Explicit barriers between “loops”
- Explicit synchronization

+ Explicit declaration of global data that is shared,
or thread-local declaration of private data

THE
UUN[VERS[TY
OF UTAH

11/1/12

MPI Parallelization: Basic version

+ Choices with respect to the data structures:
- Each process stores the entire global array of particle

masses.

- Each process only uses a single n-element array for the

positions.

- Each process uses a pointer loc_pos that refers to the

start of its block of pos.

- S0 on process O local_pos = pos; on process 1 local_pos = pos

+loc_n; etc.

Copyright © 2010, Elsevier Inc. All rights Reserved

THE
u UNIVERSITY
OF UTAH

MPI Parallelization: Basic version

Get input data;
for each timestep {
if (timestep output)
Print positions and velocities of particles;
for each local particle loc_g
Compute total force on loc_q;
for each local particle loc_g
Compute position and velocity of loc_q;
Allgather local positions into global pos array:

}

Print positions and velocities of particles;

Copyright © 2010, Elsevier Inc. All rights Reserved

Detour: MPI Scatter()

MPI_Scatter()

int MPI_Scatter(// Scatter routine
void *sendbuffer, // hddress of the data to send
int sendcount, // Number of data elements to send
MPI_Datatype sendtype, // Type of data elements to send
int destbuffer, // hddress of buffer to receive data
int destcount, // Number of data elements to receive
MPI_Datatype desttype, // Type of data elements to receive
int root, // Rank of the root process
MPI_Comm *comm // Bn WPT communicator

)i

Arguments:

® The first three arguments specify the address, size, and type of the data
elements to send to each process. These arguments only have meaning for
the root process.

The second three arguments specify the address, size, and type of the data
clements for each receiving process. The size and type of the sending data
and the receiving data may differ as a means of converting data types.

The seventh argument specifies the root process that is the source of the
ata.
= The eighth argument specifies the MPI communicator to use.
Notes:
This routine distributes data from the root process to all other processes,
including the root. A more sophisticated version of the routine,
MPI_Scatterv(),allows the root process to send different amounts of
data to the various processes. Details can be found in the MPI standard.
Return value:
An MPI error code.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesl:

THE
u UNIVERSITY
OF UTAH

Distribute Data from input using a scatter operation

16 length_per process=length/size;
17 myArray=(int *) malloc(length per process*sizeof(int));

19 array=(int *) malloc(length*sizeof(int));

21 /* Read the data, distribute it among the various processes */
22 if (myID==RootProcess)

23 {
24 if((fp=fopen(*argv, "r"))==NULL)

25 {

26 printf("fopen failed on $s\n", filename);

27 exit(0);

28 ¥

29 fscanf(fp,"$d", &length); /* read input size */
30

31 for(i=0; i<length-1; i++) /* read entire input file */
32 {

33 fscanf(£p,"$d", myArray+i);

34

35)

36

37 MPI_Scatter(Array, length per process, MPI_INT,

38 myArray, length _per_process, MPI_INT,

39 RootProcess, MPI_COMM_WORLD);

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THE
u UNIVERSITY
OF UTAH

11/1/12

MPI_ Gather is analogous

MPI_Gather: Gathers together values from a group of processes

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendfﬁe,
void *)r‘ecvbuf, int recvent, MPI_DaTaType recviype, int root, MPI_Comm
comm

Input Parameters

sendbuf starting address of send buffer (choice)
sendcount number of elements in send buffer (integer)
sendtype data type of send buffer elements (handle)

rec:couT)‘ number of elements for any single receive (integer, significant only
ar roo

recvtype data type of recv buffer elements (significant only at root) (handle)
root rank of receiving process (integer)

comm communicator (handle)

Output Parameter

recvbuf address of receive buffer (choice, significant only at root)

THE
u UNIVERSITY
OF UTAH

Detour: MPT_Allgather (a collective)

MPI_Allgather: Gathers data from all tasks and distributes the combined data to
all tasks

int MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Input Parameters

sendbuf starting address of send buffer (choice)

sendcount number of elements in send buffer (integer)

sendtype data type of send buffer elements (handle)

recvcount number of elements received from any process (integer)
recvtype data type of receive buffer elements (handle)

comm communicator (handle)

Output Parameter

recvbufaddress of receive buffer (choice)

THE
u UNIVERSITY
OF UTAH

I/0: Ch. 6, p. 291

if (my_rank == 0) {
for each particle, read masses|[particle], pos[particle], vel[particle];

}

MPI_Bcast(masses, n, MPI_DOUBLE, 0, comm);
MPI_Bcast(pos, n, vect_mpi_t, loc_vel, loc_n, vect_mpi_t, 0, comm)
MPI_Scatter(vel, loc_n, vect_mpi_t, 0, comm);

THE
u UNIVERSITY
OF UTAH

MPI Tssues

+ Communicating standard data types performs much
better than derived data types like structures

* Separate fields (position, velocity, mass? into arrays
that can be communicated independently

+ Is it feasible for each processor to have all of the
processor mass data locally? The position data?

+ Depends on how many bodies and capacity
constraints

THE
u UNIVERSITY
OF UTAH

11/1/12

MPI Parallelization: Basic version

Get input data;
for each timestep {
if (timestep output)
Print positions and velocities of particles;
for each local particle loc_g
Compute total force on loc_q;
for each local particle loc_g
Compute position and velocity of loc_q;
Allgather local positions into global pos array:
}

Print positions and velocities of particles;

Copyright © 2010, Elsevier Inc. All rights Reserved

THE
UNIVERSITY
OF UTAH

Communication In A Possible MPI
Implementation of the N-Body Solver

(for a reduced solver)

Process 2
4,5

Process 1
2,3

Process 0

Particles 0,1

Compute
forces

Update
positions of
velocities

Copyright © 2010, Elsevier Inc. All rights Reserved

THE
UNIVERSITY
OF UTAH

Ring Pass of Positions

Phase 1 Phase 2 Phase 3
S1, S5 O S2, S S3, §7 O

THE
UNI SITY
OF UTAH

Copyright © 2010, Elsevier Inc. All rights Reserved u

Pseudo-code for the MPI implementation of

the reduced n-body solver

source = (my_rank + 1) % comm_sz:

dest = (my_rank — | + comm_sz) % comm_sz;
Copy loc_pos into tmp_pos;
loc_forces = tmp_forces = 0;

Compute forces due to interactions among local particles:
for (phase = 1: phase < comm_sz: phase++) {
Send current tmp_pos and tmp_forces to dest:
Receive new tmp_pos and tmp_forces from source;
/+ Owner of the positions and forces we’'re receiving =/
owner = (my_rank + phase) % comm_sz:
Compute forces due to interactions among my particles
and owner’s particles;
}
Send current tmp_pos and tmp_forces to dest;
Receive new tmp_pos and tmp_forces from source;

Copyright © 2010, Elsevier Inc. All rights Reserved ug@mmlw

11/1/12

Loops iterating through global particle indexes

for (loc_partl = 0,
loc_partl < loc_n—1;
loc_partl++, glb_partl += comm_sz)
for (glb_part2 = First_index(glb_partl, my_rank,
loc_part2 = Global_to_local(glb_part2,
loc_part2 < loc_n;:

glb_partl = my_rank:

owner, comm_sz),
= owner, loc_n);
loc_part2++, glb_part2 += comm_sz)
Compute_force(loc_pos[loc_partl], masses[glb_partl],
tmp_pos[loc_part2], masses[glb_part2],
loc_forces|[loc_partl]

. tmp_forces[loc_part2]);

Copyright © 2010, Elsevier Inc. All rights Reserved

THE
UNIVERSITY
OF UTAH

11/1/12

