
11/1/12

1

L15: Putting it together:
N-body (Ch. 6)!

October 30, 2012!

Outline
• Review MPI Communication

-  Blocking
- Non-Blocking
- One-Sided
-  Point-to-Point vs. Collective

• Chapter 6 shows two algorithms (N-body and Tree
Search) written in the three programming models
(OpenMP, Pthreads, MPI)

- How to approach parallelization of an entire algorithm
(Foster’s methodology is used in the book)

- What do you have to worry about that is different for each
programming model?

Review p2p example: 2D relaxation

Replaces each interior value by the average of its
four nearest neighbors.

Sequential code:
for (i=1; i<n-1; i++)
 for (j=1; j<n-1; j++)
 b[i,j] = (a[i-1][j]+a[i][j-1]+
 a[i+1][j]+a[i][j+1])/4.0;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
10/25/2012 CS4230

MPI code, main loop of 2D SOR computation

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
10/25/2012 CS4230

11/1/12

2

MPI code, main loop of 2D SOR computation, cont.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
10/25/2012 CS4230

MPI code, main loop of 2D SOR computation, cont.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
10/25/2012 CS4230

Question: Does this lead to deadlock?
• No! Why not?
• Even though communication is blocking,

- Send returns when MPI library on receiving end
acknowledges that data has been received

- The receiving process may not yet have received the data
- So, a sequence of blocking Sends will not block

• What about receives?
-  Receiving process must wait until data arrives before

proceeding
- A sequence of blocking receives must be received in order

11/09/10

Foster’s methodology (Chapter 2)

1.  Partitioning: divide the computation to be performed and the
data operated on by the computation into small tasks.

The focus here should be on identifying tasks that can be
executed in parallel.

2.  Communication: determine what communication needs to be
carried out among the tasks identified in the previous step.

3.  Agglomeration or aggregation: combine tasks and
communications identified in the first step into larger tasks.

For example, if task A must be executed before task B can
be executed, it may make sense to aggregate them into a
single composite task.

4.  Mapping: assign the composite tasks identified in the previous
step to processes/threads.

This should be done so that communication is minimized, and
each process/thread gets roughly the same amount of work.

Copyright © 2010, Elsevier Inc. All rights Reserved

11/1/12

3

The n-body problem
• Find the positions and velocities of a collection of

interacting particles over a period of time.

• An n-body solver is a program that finds the solution
to an n-body problem by simulating the behavior of
the particles.

Copyright © 2010, Elsevier Inc. All rights Reserved

mass

Positiontime 0

Velocitytime 0

N-body solver
Positiontime x

Velocitytime x

2. Overlying mesh defined!

1. Lagrangian material points carry all!
 state data (position, velocity, stress, etc.)!

5. Particle positions/velocities updated from !
 mesh solution.!

6. Discard deformed mesh.!
 Define new mesh and repeat!

1!

2!

3!

4!

5!

Example N-Body: Material Point Method (MPM)

3. Particle state projected to mesh, e.g.:!

4. Conservation of momentum solved!
 on mesh giving updated mesh velocity!
 and (in principal) position.!

 Stress at particles computed based!
 on gradient of the mesh velocity.!

6!

vg = Sgpmpvpp∑ Sgpmpp∑

10

Copyright © 2010, Elsevier Inc. All rights Reserved

Calculate Force as a function of mass and positions

Force between two particles

Total force on a particle

Copyright © 2010, Elsevier Inc. All rights Reserved

Calculate acceleration

11/1/12

4

Serial pseudo-code: calculates position of
particles at each time step

Copyright © 2010, Elsevier Inc. All rights Reserved

Computation of the forces: Basic Algorithm

Copyright © 2010, Elsevier Inc. All rights Reserved

For all pairs (except <q,q>) compute Total Force

Copyright © 2010, Elsevier Inc. All rights Reserved

Computation of the forces: Reduced Algorithm
Reduce calculation of Total Force, capitalizing on fqk = -fkq
Compute half the pairs

Compute position using Euler’s Method

Copyright © 2010, Elsevier Inc. All rights Reserved

Use tangent to compute position at later time step

11/1/12

5

OpenMP parallelization: Basic Algorithm

Copyright © 2010, Elsevier Inc. All rights Reserved

For all pairs (except <q,q>) compute Total Force
Parallelization? Scheduling?

Copyright © 2010, Elsevier Inc. All rights Reserved

Computation of the forces: Reduced Algorithm
Reduce calculation of Total Force, capitalizing on fqk = -fkq
Compute half the pairs
Parallelization? Scheduling?

Other topics on OpenMP parallelization

Data structure choice – group together in structure or
separate arrays?

Thread creation

Alternative synchronization (reduced method)

Private data (reduced method)

Nowait

I/O (single)

What’s different with Pthreads
• Must write more code to do basic OpenMP things:

• Create threads, pass parameters, determine
number and mapping of iterations and initiate
“parallel loop”

• Explicit barriers between “loops”
• Explicit synchronization
• Explicit declaration of global data that is shared,

or thread-local declaration of private data

11/1/12

6

• Choices with respect to the data structures:
-  Each process stores the entire global array of particle

masses.
-  Each process only uses a single n-element array for the

positions.
-  Each process uses a pointer loc_pos that refers to the

start of its block of pos.
- So on process 0 local_pos = pos; on process 1 local_pos = pos

+ loc_n; etc.

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI Parallelization: Basic version MPI Parallelization: Basic version

Copyright © 2010, Elsevier Inc. All rights Reserved

Detour: MPI_Scatter()

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Distribute Data from input using a scatter operation

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11/1/12

7

MPI_Gather is analogous
MPI_Gather: Gathers together values from a group of processes
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm
comm)

Input Parameters
sendbuf starting address of send buffer (choice)
sendcount number of elements in send buffer (integer)
sendtype data type of send buffer elements (handle)
recvcount number of elements for any single receive (integer, significant only

at root)
recvtype data type of recv buffer elements (significant only at root) (handle)
root rank of receiving process (integer)
comm communicator (handle)

Output Parameter
recvbuf address of receive buffer (choice, significant only at root)

Detour: MPI_Allgather (a collective)
MPI_Allgather: Gathers data from all tasks and distributes the combined data to
all tasks

int MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Input Parameters
sendbuf starting address of send buffer (choice)
sendcount number of elements in send buffer (integer)
sendtype data type of send buffer elements (handle)
recvcount number of elements received from any process (integer)
recvtype data type of receive buffer elements (handle)
comm communicator (handle)

Output Parameter

recvbufaddress of receive buffer (choice)

I/O: Ch. 6, p. 291

if (my_rank == 0) {
 for each particle, read masses[particle], pos[particle], vel[particle];
}

MPI_Bcast(masses, n, MPI_DOUBLE, 0, comm);
MPI_Bcast(pos, n, vect_mpi_t, loc_vel, loc_n, vect_mpi_t, 0, comm)
MPI_Scatter(vel, loc_n, vect_mpi_t, 0, comm);

MPI Issues
• Communicating standard data types performs much

better than derived data types like structures
• Separate fields (position, velocity, mass) into arrays

that can be communicated independently
• Is it feasible for each processor to have all of the

processor mass data locally? The position data?
• Depends on how many bodies and capacity

constraints

11/1/12

8

MPI Parallelization: Basic version

Copyright © 2010, Elsevier Inc. All rights Reserved

Communication In A Possible MPI
Implementation of the N-Body Solver
(for a reduced solver)

Copyright © 2010, Elsevier Inc. All rights Reserved

Ring Pass of Positions

Copyright © 2010, Elsevier Inc. All rights Reserved

Pseudo-code for the MPI implementation of
the reduced n-body solver

Copyright © 2010, Elsevier Inc. All rights Reserved

11/1/12

9

Loops iterating through global particle indexes

Copyright © 2010, Elsevier Inc. All rights Reserved

