
10/5/12

1

CS4230!

CS4230 Parallel Programming  

Lecture 12:  
More Task Parallelism  

Mary Hall  
October 4, 2012 

1!10/04/2012!

Homework 3: Due Before Class, Thurs. Oct. 18
handin cs4230 hw3 <file>
•  Problem 1 (Amdahl’s Law):
 (i) Assuming a 10 percent overhead for a parallel

computation, compute the speedup of applying 100
processors to it, assuming that the overhead remains
constant as processors are added. (ii) Given this
speedup, what is the efficiency? (iii.) Using this
efficiency, suppose each processor is capable of 10
Gflops peak performance. What is the best
performance we can expect for this computation in
Gflops?

• Problem 2 (Data Dependences):
 Does the following code have a loop-carried

dependence? If so, identify the dependence or
dependences and which loop carries it/them.

 for (i=1; i < n-1; i++)
 for (j=1; j < n-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j+1];

10/04/2012! CS4230! 2!

Problem 3 (Locality):
 Sketch out how to rewrite the following code to

improve its cache locality and locality in registers.
Assume row-major access order.

 for (i=1; i<n; i++)
 for (j=1; j<n; j++)
 a[j][i] = a[j-1][i-1] + c[j];
 Briefly explain how your modifications have improved

memory access behavior of the computation.

10/04/2012! CS4230! 3!

Homework 3, cont. Homework 3, cont.
Problem 4 (Task Parallelism):
 Construct a producer-consumer pipelined code in OpenMP to identify the

set of prime numbers in the sequence of integers from 1 to n. A common
sequential solution to this problem is the sieve of Erasthones. In this
method, a series of all integers is generated starting from 2. The first
number, 2, is prime and kept. All multiples of 2 are deleted because they
cannot be prime. This process is repeated with each remaining number, up
until but not beyond sqrt(n). A possible sequential implementation of this
solution is as follows:

 for (i=2; i<=n; i++) prime[i] = true; // initialize
 for (i=2; i<= sqrt(n); i++) {
 if (prime[i]) {
 for (j=i+i; j<=n; j = j+i) prime[j] = false;
 }
 }
 The parallel code can operate on different values of i. First, a series of

consecutive numbers is generated that feeds into the first pipeline stage.
This stage eliminates all multiples of 2 and passes remaining numbers onto
the second stage, which eliminates all multiples of 3, etc. The parallel
code terminates when the “terminator” element arrives at each pipeline
stage.

10/04/2012! CS4230! 4!

10/5/12

2

General: Task Parallelism
• Recall definition:

- A task parallel computation is one in which parallelism is
applied by performing distinct computations – or tasks – at
the same time. Since the number of tasks is fixed, the
parallelism is not scalable.

• OpenMP support for task parallelism
-  Parallel sections: different threads execute different code
- Tasks (NEW): tasks are created and executed at separate

times

• Common use of task parallelism = Producer/consumer
- A producer creates work that is then processed by the

consumer
-  You can think of this as a form of pipelining, like in an

assembly line
- The “producer” writes data to a FIFO queue (or similar) to

be accessed by the “consumer”
CS4230! 5!10/04/2012!

Simple: OpenMP sections directive

#pragma omp parallel
{
#pragma omp sections
#pragma omp section

 {{ a=...;
 b=...; }

#pragma omp section
 { c=...;
 d=...; }

#pragma omp section
 { e=...;
 f=...; }

#pragma omp section
 { g=...;
 h=...; }

} /*omp end sections*/
} /*omp end parallel*/

6!CS4230!10/04/2012!

Parallel Sections, Example

CS4230! 7!

#pragma omp parallel shared(n,a,b,c,d) private(i)
{
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i<n; i++)
 d[i] = 1.0/c[i];
 #pragma omp section
 for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;
 } /*-- End of sections --*/
} /*-- End of parallel region

10/04/2012!

Simple Producer-Consumer Example
// PRODUCER: initialize A with random data
void fill_rand(int nval, double *A) {
for (i=0; i<nval; i++) A[i] = (double) rand()/1111111111;
}

// CONSUMER: Sum the data in A
double Sum_array(int nval, double *A) {
double sum = 0.0;
for (i=0; i<nval; i++) sum = sum + A[i];
return sum;
}

CS4230! 8!10/04/2012!

10/5/12

3

Key Issues in Producer-Consumer Parallelism
• Producer needs to tell consumer that the data is

ready
• Consumer needs to wait until data is ready
• Producer and consumer need a way to communicate

data
-  output of producer is input to consumer

• Producer and consumer often communicate through
First-in-first-out (FIFO) queue

CS4230! 9!10/04/2012!

One Solution to Read/Write a FIFO
• The FIFO is in global memory and is shared between

the parallel threads
• How do you make sure the data is updated?
• Need a construct to guarantee consistent view of

memory
-  Flush: make sure data is written all the way back to global

memory

CS4230! 10!

Example:
Double A;
A = compute();
Flush(A);

10/04/2012!

Solution to Producer/Consumer
flag = 0;
#pragma omp parallel
{
 #pragma omp section
 {
 fillrand(N,A);
 #pragma omp flush
 flag = 1;
 #pragma omp flush(flag)
 }

 #pragma omp section
 {
 while (!flag)
 #pragma omp flush(flag)
 #pragma omp flush
 sum = sum_array(N,A);
 }
}

CS4230! 11!10/04/2012!

Reminder: What is Flush?
• Flush

- Specifies that all threads have the same view of memory
for all shared objects.

• Flush(var)
- Only flushes the shared variable “var”

CS4230! 12!10/04/2012!

10/5/12

4

Another (trivial) producer-consumer example
for (j=0; j<M; j++) {
 sum[j] = 0;
 for(i = 0; i < size; i++) {
 // TASK 1: scale result
 out[i] = _iplist[j][i]*(2+i*j);
 // TASK 2: compute sum
 sum[j] += out[i];
 }
 // TASK 3: compute average and compare with max
 res = sum[j] / size;
 if (res > maxavg) maxavg = res;
 }
 return maxavg;
10/04/2012! CS4230! 13!

Another Example from Textbook
• Implement Message-Passing on a Shared-Memory

System for Producer-consumer
• A FIFO queue holds messages
• A thread has explicit functions to Send and Receive

- Send a message by enqueuing on a queue in shared memory
-  Receive a message by grabbing from queue
-  Ensure safe access

CS4230! 14!10/04/2012!

Message-Passing

CS4230! 15!10/04/2012!

Sending Messages

CS4230!

Use synchronization mechanisms to update FIFO
“Flush” happens implicitly
What is the implementation of Enqueue?

16!10/04/2012!

10/5/12

5

Receiving Messages

CS4230!

This thread is the only one to dequeue its messages.
Other threads may only add more messages.
Messages added to end and removed from front.
Therefore, only if we are on the last entry is
synchronization needed.

17!10/04/2012!

Termination Detection

CS4230!

each thread increments this after
completing its for loop

More synchronization needed on “done_sending”

18!10/04/2012!

Task Example: Linked List Traversal

•  How to express with parallel for?
- Must have fixed number of iterations
-  Loop-invariant loop condition and no early exits

CS4230! 19!

........
while(my_pointer) {
 (void) do_independent_work (my_pointer);
 my_pointer = my_pointer->next ;
} // End of while loop
........

10/04/2012!

OpenMP 3.0: Tasks!

CS4230! 20!

my_pointer = listhead;
#pragma omp parallel {
 #pragma omp single nowait {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer) {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
} // End of parallel region - implied barrier here

firstprivate = private and copy initial value from global variable
lastprivate = private and copy back final value to global variable

10/04/2012!

