
8/23/12

1

08/21/2012! CS4230!

CS4230 Parallel Programming  

Lecture 1: Introduction  

Mary Hall  
August 21, 2012 

1!

Course Details
• Time and Location: TuTh, 9:10-10:30 AM, WEB L112
• Course Website

-  http://www.eng.utah.edu/~cs4230/

•  Instructor: Mary Hall, mhall@cs.utah.edu,
 http://www.cs.utah.edu/~mhall/

-  Office Hours: Mon 11:00-11:30 AM; Th 10:45-11:15 AM

• TA: TBD
-  Office Hours: TBD

• SYMPA mailing list
-  cs4230@list.eng.utah.edu
-  https://sympa.eng.utah.edu/sympa/info/cs4230

• Textbook
-  “An Introduction to Parallel Programming,”

 Peter Pacheco, Morgan-Kaufmann Publishers, 2011.
-  Also, readings and notes provided for other topics as needed

08/21/2012! CS4230! 2!

Administrative
• Prerequisites:

-  C programming
-  Knowledge of computer architecture
-  CS4400 (concurrent ok for seniors)

• Please do not bring laptops to class!
• Do not copy solutions to assignments from the internet

(e.g., wikipedia)
• Read Chapter 1 of textbook by next lecture
• First homework handed out next time

08/21/2012! 3!
CS4230!

Basis for Grades
•  35% Programming projects (P1,P2,P3,P4)
•  20% Written homeworks
•  5% Participation (in-class assignments)
•  25% Quiz and Final
•  15% Final project

08/21/2012! CS4230! 4!

8/23/12

2

Today’s Lecture

• Overview of course
• Important problems require powerful computers …

- … and powerful computers must be parallel.
- Increasing importance of educating parallel
programmers (you!)

- Some parallel programmers need to be performance
experts – my approach

• What sorts of architectures in this class
-  Multimedia extensions, multi-cores, SMPs, GPUs,

networked clusters

• Developing high-performance parallel applications
• An optimization perspective

08/21/2012! 5!
CS4230!

Course Objectives
• Learn how to program parallel processors and
systems

- Learn how to think in parallel and write correct
parallel programs

- Achieve performance and scalability through
understanding of architecture and software mapping

• Significant hands-on programming experience
- Develop real applications on real hardware
- Develop parallel algorithms

• Discuss the current parallel computing context
- Contemporary programming models and

architectures, and where is the field going
08/21/2012! CS4230! 6!

Why is this Course Important?
• Multi-core and many-core era is here to stay

- Why? Technology Trends

• Many programmers will be developing parallel
software

-  But still not everyone is trained in parallel programming
-  Learn how to put all these vast machine resources to the

best use!

• Useful for
- Joining the work force
- Graduate school

• Our focus
- Teach core concepts
- Use common programming models
- Discuss broader spectrum of parallel computing

08/21/2012! CS4230! 7!

Technology Trends: Microprocessor Capacity

Slide source: Maurice Herlihy

Clock speed
flattening

sharply

Transistor
count still

rising

Moore’s Law:
Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor
density of semiconductor chips would double roughly every 18 months.
08/21/2012! 8!CS4230!

8/23/12

3

• Key ideas:
- Movement away from increasingly complex processor design

and faster clocks
-  Replicated functionality (i.e., parallel) is simpler to design
-  Resources more efficiently utilized
- Huge power management advantages

What to do with all these transistors?

The Multi-Core or Many-Core Paradigm Shift

All Computers are Parallel Computers.
08/21/2012! 9!CS4230! 08/21/2012! CS4230!

 Scientific Simulation:
The Third Pillar of Science

•  Traditional scientific and engineering paradigm:
1)  Do theory or paper design.
2)  Perform experiments or build system.

•  Limitations:
-  Too difficult -- build large wind tunnels.
-  Too expensive -- build a throw-away passenger jet.
-  Too slow -- wait for climate or galactic evolution.
-  Too dangerous -- weapons, drug design, climate

experimentation.

•  Computational science paradigm:
3)  Use high performance computer systems to simulate

the phenomenon
- Base on known physical laws and efficient numerical
methods.

10!

Slide source: Jim Demmel

The quest for increasingly more powerful machines

• Scientific simulation will continue to push on system
requirements:

- To increase the precision of the result
- To get to an answer sooner (e.g., climate modeling, disaster

modeling)

• The U.S. will continue to acquire systems of
increasing scale

-  For the above reasons
- And to maintain competitiveness

• A similar phenomenon in commodity machines
- More, faster, cheaper

08/21/2012! CS4230! 11!

Slide source: Jim Demmel

08/21/2012! CS4230!

Example: Global Climate Modeling Problem
• Problem is to compute:

f(latitude, longitude, elevation, time) 
 temperature, pressure, humidity, wind velocity

•  Approach:
- Discretize the domain, e.g., a measurement point every 10 km
- Devise an algorithm to predict weather at time t+δt given t

• Uses:
-  Predict major events,

e.g., El Nino
-  Use in setting air

emissions standards

Source: http://www.epm.ornl.gov/chammp/chammp.html
12!

Slide source: Jim Demmel

8/23/12

4

08/21/2012! CS4230!

Some Characteristics of Scientific Simulation

• Discretize physical or conceptual space into a grid
- Simpler if regular, may be more representative if adaptive

• Perform local computations on grid
- Given yesterday’s temperature and weather pattern, what is

today’s expected temperature?

• Communicate partial results between grids
-  Contribute local weather result to understand global

weather pattern.

• Repeat for a set of time steps
• Possibly perform other calculations with results

- Given weather model, what area should evacuate for a
hurricane?

13!

Example of Discretizing a Domain

08/21/2012! CS4230!

One
processor
computes
this part

Another
processor
computes
this part in
parallel

Processors in adjacent blocks in the grid communicate their result.

14!

Parallel Programming Complexity: An Analogy
• Enough Parallelism (Amdahl’s Law)
• Parallelism Granularity

•  Independent work between coordination points

• Locality
-  Perform work on nearby data

• Load Balance
-  Processors have similar amount of work

• Coordination and Synchronization
- Who is in charge? How often to check in?

08/21/2012! CS4230! 15!

Course Goal
• Most people in the research community agree that

there are at least two kinds of parallel programmers
that will be important to the future of computing

• Programmers that understand how to write software,
but are naïve about parallelization and mapping to
architecture (Joe programmers)

• Programmers that are knowledgeable about
parallelization, and mapping to architecture, so can
achieve high performance (Stephanie programmers)

•  Intel/Microsoft say there are three kinds (Mort, Elvis
and Einstein)

• This course is about teaching you how to become
Stephanie/Einstein programmers

8/23/12

5

Course Goal
• Why OpenMP, Pthreads, MPI and CUDA?

• These are the languages that Einstein/Stephanie
programmers use.

• They can achieve high performance.
• They are widely available and widely used.
• It is no coincidence that both textbooks I’ve used

for this course teach all of these except CUDA.

