CS4961: Parallel Programming Midterm Exam
October 20, 2011

Instructions:

This is an in-class, open-book, open-note exam. Please use the paper provided to
submit your responses. You can include additional paper if needed. The goal of the
exam is to reinforce your understanding of issues we have studied in class.



CS4961: Parallel Programming
Midterm Quiz
October 20, 2011

I. Definitions (10 points)
Provide a very brief definition of the following terms:

a. Barrier

b. Candidate Type Architecture

C. #pragma omp task
d. Bisection bandwidth
e. Snooping cache coherence

I1. Short Answer (30 points)
a. Does the following code have a loop-carried dependence? If so, identify the
dependence or dependences and which loop carries it/them.

for (i=1; i < n-1; i++)
for (j=1;j < n-1; j++)
A[[T = AG]G-1] + A[-1][j+11;

b. Briefly compare OpenMP and Pthreads by describing the advantages and
disadvantages of each language.

c. What sort of cache locality is achievable in the following code and how would
you obtain it? (Assume row major ordering in memory for the arrays.)

for (j=0; j<n; j++)
for (i=0; i<n; i++)

Ali][j] += BL][L



d. Suppose you had a Pthreads program where most of the time you were
performing read-only operations on a specific data structure but occasionally
you were updating the data structure. How could you synchronize accesses
to that data structure to avoid race conditions and still mostly access the data
structure in parallel.

e. Ifyou were to parallelize the following loop in OpenMP, what directives
would you provide to achieve a static scheduling of iterations in block-cyclic
order where each thread would execute 8 consecutive iterations of the loop?

for (i=0; i<n; i++)
Ali] += B[i];

II1. Problem Solving (60 points)

In this set of three questions, you will be asked to provide code solutions to solve
particular problems. This portion of the exam may take too much time if you write
out the solution in detail. I will accept responses that sketch the solution, without
necessarily writing out the code or worrying about correct syntax. Just be sure you
have conveyed the intent and issues you are addressing in your solution.

a. Rewrite the following sequential code in OpenMP for producer-consumer task
parallelism.

for (i=0; i<INPUT_SIZE; i++) {

// TASK 1: Finite Impulse Response (FIR) filter
for (j=0; j<TAP_SIZE; j++) {

sum += sample[i+j] * coeff[i];
}

data_out[i] = sum;

// TASK 2: Multiply by coefficient
final[i] = data_out[i];
for (j=0; j<n; j++) {
final[i] *= coeff2][j];
}
}



b. How would you rewrite the following code to perform as many operations as
possible in SIMD mode for SSE and achieve good SIMD performance? Assume the
data type for all the variables is 32-bit integers, and the superword width is 128 bits.
Briefly justify your solution.

k =7?; // kis an unknown value in the range 0 to n, and b is declared to be of size 2n
for (i= 0; i<n; i++) {

x1=11+j1;
X2 =12 +j2;
x3 =13 +j3;
x4 =14 +j4;

x5 =x1 + x2 + x3 + x4;
a[i] = b[n+i]*x5;

c. Sketch out how to rewrite the following code to improve its cache locality and
locality in registers.

for (i=1; i<n; i++)
for (j=1; j<n; j++)
a[jl[i] = a[j-1]{i-1] + c[jl;

Briefly explain how your modifications have improved memory access behavior of
the computation.



