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Porting Racket to Chez Scheme (Experience Report)

ANONYMOUS AUTHOR(S)

We ported Racket to Chez Scheme, and it works well—as long as we’re allowed a few patches to Chez Scheme.
DrRacket runs, the Racket distribution can build itself, and nearly all of the core Racket test suite passes.
Maintainability and performance of the resulting implementation are good, although some work remains to
improve end-to-end performance. The least predictable part of our effort was how big the differences between
Racket and Chez Scheme would turn out to be and how we would manage those differences. We expect Racket
on Chez Scheme to become the main Racket implementation, and we encourage other language implementors
to consider Chez Scheme as a target virtual machine.

1 STARTING A RACKET
Racket started in 1995 as a fusion of two off-the-shelf C/C++ libraries: a Scheme interpreter (Benson
1994) and a cross-platform GUI toolkit (Smart 1995). The intent was to assemble enough of a Scheme
implementation to host a graphical pedagogical programming environment. The programming
environment became DrRacket, and the interpreter mash-up evolved into the modern Racket core.
Although combining existing libraries is a sensible way to produce new software, picking a

C-implemented interpreter for Racket does not, in retrospect, look like a well-informed choice.
Starting with a slow interpreter encouraged the creation of more C code, even when the new parts
included a compiler, JIT, and runtime extensions that ultimately improved Racket’s performance.
The main Racket distribution now consists of roughly 1.2M lines of Racket, but that code is still
supported by roughly 200k lines of C. Large parts of Racket’s implementation remain in C only
because the original interpreter was in C, and all of that C code is relatively difficult to maintain.
Experience porting various subsystems from C/C++ to Racket—notably the cross-platform

graphics and GUI layer in 2010 and the macro expander in 2016—has confirmed that Racket-
implemented libraries are easier to maintain and modify, unsurprisingly. The obvious next step is
to migrate the compiler and runtime system itself to a more maintainable form. Again, building on
existing technology is better than starting from scratch.
There are many virtual machines that a language implementer might choose to target, but the

major ones are not well suited to host a functional programming language. Most artificially limit
the continuation to a fixed-size call stack, preventing a programmer from using the direct, recursive
style that naturally matches a list- or tree-shaped data declaration. Some have grudgingly tacked
on a tail-call instruction, but first-class continuations are right out. Most provide numerical support
only in the form of floating-point numbers and small integers, leaving out arbitrary precision
arithmetic. The functional-programming community sorted out these issues decades ago.

Chez Scheme became available as an open-source implementation in mid-2016. It is certainly a
better-informed starting point for building a functional language, and it is an especially good match
for Racket. Selecting an compiler and runtime to drop into an existing ecosystem is a different
proposition than picking a base for a new language, and while Chez Scheme and Racket implement
similar languages, they are different enough that success was not guaranteed. Whether and how to
manage mismatches between Chez Scheme and Racket was the least predictable part of our effort,
and so we concentrate on that aspect of the conversion in this experience report.

Our experience suggests that other implementations of functional programming languages could
benefit from targeting Chez Scheme. While our efforts required changes to Chez Scheme, some of
those may be useful to other implementers, and most of the rest are due to aiming for a very high
level of compatibility with an existing system.

Author’s address: Anonymous Author(s).
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Racket v7
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1kmain
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8k Scheme expander
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machine-code compiler
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kernel
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Racket on Chez Scheme

Racket

Scheme

C

Fig. 1. Comparing the traditional Racket, Chez Scheme, Racket CS implementations. Numbers
to the left of each block are rough lines of code as measured with wc -l, and they add up to the
number at the top right of each column. Anecdotally, relative lines of code consistently approximate
relative functionality.

2 PORTING OVERVIEW
Figure 1 illustrates both the porting task and the motivation for Racket on Chez Scheme (a.k.a.
Racket CS). The leftmost column represents the content of the racket executable in the current
Racket release; except for the macro expander, it is implemented in C. The middle column represents
Chez Scheme, including its boot files; Chez Scheme has a small kernel that is written in C, but it is
mostly implemented in Scheme. The rightmost column represents the new Racket implementation
on Chez Scheme; besides Chez Scheme’s implementation, it includes a compatibility layer that
is implemented in Scheme, a C-implemented rktio layer that abstracts over operating-system
facilities (similar to libraries like libuv1), and additional Racket-specific functionality that is
implemented in Racket.

The “expander” layer at the top of both the leftmost and rightmost columns implements Racket’s
module and macro system, and it is the same implementation in both cases. The output of the macro
expander is a set of linklet forms, where a small layer immediately below the “expander” layer
manages compilation and evaluation of linklet forms. We discuss the linklet form in section 3.
For Racket CS, the “schemify” layer converts a Racket linklet to a Chez Scheme lambda, which is
then handled by the Chez Scheme compiler.2

1https://github.com/libuv/libuv
2Racket modules sometimes generate extremely large linklet forms. In that case, Racket CS interprets the outer layer of
the schmified linklet and compiles only smaller, interior lambda forms.

https://github.com/libuv/libuv
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The layers depicted in figure 1 are mostly conceptual, except that the Racket-implemented layers
correspond to distinct subsystems that can be separately compiled and tested. The “builtins” layer
in each column represents a broad collection of primitive datatypes, including numbers (fixnums,
flonums, exact rationals, and complex numbers), lists, strings, hash tables, records, procedures,
continuations, and more. The “control+structs” layers represent Racket’s full API for delimited
continuations, impersonators and chaperones, structure-type properties, and related reflective
operations; for Racket CS, some of those augment or replace variants from “builtins.” The Racket
CS “I/O” layer similarly replaces I/O APIs from Chez Scheme’s “builtins” with an implementation
that uses rktio and cooperates with Racket threads. Racket threads are userspace threads with a
rich system of synchronous events that is based on Concurrent ML (Reppy 1999), but the “threads”
layer also includes Racket’s places and futures, which provide access to OS-level concurrency.
To a first approximation, porting Racket to Chez Scheme means developing the layers that are

unique to the rightmost column of figure 1. The effort triggered changes that are already reflected
in the leftmost column, such as moving parts into a stand-alone rktio library. More significantly,
the rightmost column relies on a Chez Scheme with about 30 changes and patches. We attempted
to minimize those changes, and we detail many of the trade-offs involved with those modifications
in section 4.

3 LINKLETS AND BOOTSTRAPPING
Racket’s macro and module system is responsible for elaborating source programs into a core
language that is consumed by the compiler. A module can not only implement syntax that is to be
used in other modules, it can contain macros that extend the language used in the module’s own
body. The macro expander strictly separates run-time and expansion phases (and meta-expansion
phase, etc.), so a single module can correspond to multiple bundles of code. For example, run time
and compile time are implemented as distinct code bundles. Literal syntax objects, which are a
generalization of S-expressions to accommodate binding information, bridge those two worlds, so
they live in yet another code bundle.
The code bundles produced from a module use a core language that is similar to the core for

most any functional language, i.e., the λ-calculus with a handful of syntactic extensions. Instead of
using a lambda form directly, however, each code bundle produced by Racket’s macro expander
is a linklet form, which consumes and produces variables that have names and are potentially
mutable, instead of consuming and producing values. Figure 2 sketches the expansion of an example
Racket module into a set of linklets. A simple module’s expansion produces one to three linklets,
but submodules or higher expansion phases can generate additional linklets.
The imports to a linklet are grouped into sets of variables, where each set will be provided

by a potentially distinct linklet instance. When a linklet is instantiated, its body definitions and
expressions are evaluated, and the exported subset of the defined variables are packaged up in a
result linklet instance, which can be provided in turn to future linklet instantiations. By making
the concepts of variables, imports, and exports explicit, the macro expander can cooperate with
an underlying compiler to support cross-module optimizations (which turn into cross-linklet
optimizations). Cross-module optimization in Racket CS is implemented by the schemify layer,
while it is part of the lower-layer bytecode compiler in the existing Racket implementation.

Besides using core syntactic forms, a linklet body can directly refer to primitive functions
like vector-ref and +. Those direct references allow the underlying compiler to recognize and
optimize references to system primitives. Racket linklets rely on a large set of primitives—roughly
1500 of them. In the case of building Racket on Chez Scheme, we get most of those primitives for
free, since a shared Lisp and Scheme heritage means that Chez Scheme already implements the
majority of primitives that Racket needs. Racket- and Scheme-implemented layers provide the rest.
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source module

#lang racket
(define-syntax (zero stx)
  #'(random 1))
(define (add0 n)
  (+ (zero) n))

run-time linklet

(linklet [(random)]
(add0)

  (define add0
  (lambda (n)

  (+ (random 1) n))))

compile-time linklet

(linklet [(set-syntax!)
(stxes)]

()
  (set-syntax! 'zero

(lambda (stx)
  (vector-ref stxes 0))))

syntax-objects linklet

(linklet [(make-stx)]
(stxes)

  (define stxes
  (vector

(make-stx '(random 1) ....))))

single import

single export

one import each
from two different
sources

directly referenced
primitive

Fig. 2. Example expansion of a Racket module into linklets.

A Racket-implemented layer of Racket CS must be translated to Scheme to run on top of
Chez Scheme. Naturally, that translation works by running it through the expander (using some
existing Racket implementation), which produces a set of linklets. Then, the subset of linklets that
corresponds to the layer’s run-time implementation can be flattened into a single linklet, and the
flattened linklet can be translated to Scheme by the schemify compiler. The macro expander and
schemify can run on themselves to generate the full sets of layers. Each layer is wrapped as a Chez
Scheme library, and then the set of libraries is compiled together using whole-program optimization
in unsafe mode and without debugging information.

4 LANGUAGE MISMATCHES
Figure 3 provides a summary of the various ways that Racket CS initially needed different behavior
from Chez Scheme. Some of the mismatches were resolved through schemify or the compatibility
library that acts as a layer between Chez Scheme and the rest of Racket. Some mismatches were
resolved by adding or changing functionality in Chez Scheme in a way that seems generally useful,
and many of those changes have been merged into the main Chez Scheme implementation. Other
changes to Chez Scheme are either controversial or heavyweight compared to the expected benefit
for applications other than Racket, so those are organized as Racket-specific patches to Chez Scheme.
A small number of those patches are marked as “for now,” which means that a patch is convenient
given that other patches are needed, but alternative solutions may be possible—including just
accepting the mismatch. Finally, some mismatches already appear to be acceptable in the long run.

4.1 Evaluation Rules
Left-to-Right Evaluation. In Racket, a function-call expression always evaluates its argument subex-
pressions left-to-right. Chez Scheme follows the Scheme standard (Sperber et al. 2007), which
does not specify the order of evaluation for subexpressions in a function call. This difference is
managed in Racket CS by transforming a function-call form to a sequence of nested lets, since a
let’s right-hand side is always evaluated before the body form. The schemify layer of Racket CS
performs this transformation, and to avoid expanding code too much or unnecessarily constraining
the compiler, schemify does not perform the transformation if it can determine that order does not
matter.
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Evaluation Rules
Left-to-right evaluation change resolved by schemify
letrec and multiple returns change resolved by schemify
Delimited continuations addition resolved by library
Continuation marks addition patch Chez Scheme for Racket only
Preserving non-tail calls change patch Chez Scheme for Racket only
Structures and Procedures
Applicable structures and other properties addition resolved by schemify and library
Procedure arity and name reflection addition patch Chez Scheme for Racket only
Procedure approximate result arity addition patch Chez Scheme for Racket only
Core Datatypes
Immutable pairs addition resolved by library
Immutable vectors and strings addition modify Chez Scheme
Chaperones and impersonators addition resolved by library
Partial hash-table iteration addition modify Chez Scheme
Immutable hash tables and eq? hash codes addition resolved by library
Numbers
Arithmetic special cases, such as (/ 0 ....) change modify Chez Scheme
Left-associative +, *, and variants change patch Chez Scheme, for now
eqv? on +nan.0 change patch Chez Scheme, for now
eq? on flonums change patch Chez Scheme, for now
Single- and extended-precision flonums addition accept mismatch
Compilation
Eager line/column source-location tracking addition modify Chez Scheme
Permissive library recompilation addition patch Chez Scheme for Racket only
Type reconstruction for optimization addition patch Chez Scheme for Racket only
Faster boot-file loading change patch Chez Scheme for Racket only
Flonum unboxing change accept mismatch, for now
Memory Management
Ephemerons addition modify Chez Scheme
Ordered and unordered finalization addition patch Chez Scheme for Racket only
Memory accounting addition patch Chez Scheme for Racket only
Debugging backreferences addition patch Chez Scheme for Racket only
Phantom byte strings addition patch Chez Scheme for Racket only
Incremental garbage collection change accept mismatch, for now
Foreign-Function Interface
Foreign-pointer representation addition resolved by library
C struct arguments and returns addition modify Chez Scheme
Foreign-thread activation addition modify Chez Scheme
Compare-and-set addition modify Chez Scheme
Locked versus immobile memory change accept mismatch
Exported C API change accept mismatch

Fig. 3. Summary of mismatches between Racket and Chez Scheme.

letrec and Multiple Returns. Schemify similarly resolves a difference with letrec, where the
Scheme standard makes the result unspecified for the following program if calling get-f captures
a continuation that is used to return a second time.

(letrec ([g (lambda () f)]
[f (get-f)])

(g))
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Racket specifies the behavior of this program in terms of the allocation of variable locations for g
and f, and schemify implements that specification by transforming the expression to a conventional
combination of let and set!. Again, the transformation should apply only when necessary, and
limiting this transformation requires an analysis of letrec bindings in schemify, including whether
variables are potentially referenced before they have a value. That analysis duplicates one that is
already present in Chez Scheme, but the analysis is not onerous, and it also supports a transformation
to guard potential references before initialization; the explicit guard ensures that an error reports
the source name of the variable, which is otherwise mangled by macro expansion.

Delimited Continuations. Racket’s support for first-class control includes delimited and composable
continuations (Flatt et al. 2007). Chez Scheme provides just call/cc, but the Chez Scheme devel-
opers have a long record of work on continuations (Dybvig et al. 2007; Hieb et al. 1994; Hieb and
Dybvig 1990), so it’s no coincidence that the implementation is well suited to delimited control.
Specifically, Chez Scheme internals include an operation to truncate a captured continuation,
and Racket CS uses that operation to delimit continuations. Instead of exposing call/cc and
dynamic-wind directly, Racket implements wrappers that implement prompt-sensitive variants
of those operations. Overall, the implementation is similar to previously reported strategies for
delimited control based on metacontinuations (Danvy and Filinski 1990; Dybvig et al. 2007).

Continuation Marks. In addition to operations for capturing and restoring continuations, Racket
provides continuation marks for reflecting on them (Clements and Felleisen 2004; Flatt et al. 2007).
Continuation marks play an important role in Racket for implementing dynamic binding, exception
handling, debugging facilities (Clements et al. 2001; Li and Flatt 2017), profiling (Andersen et al.
2019), and contracts. The syntactic form for installing a continuation mark,

(with-continuation-mark
key-expr value-expr
body)

associates the result of key-expr to value-expr in the current continuation frame, replacing
any existing association for the key. Crucially, body remains in tail position with respect to the
with-continuation-mark form, which is why continuation marks cannot be implemented simply
by wrapping bodywith push and pop operations. Functions such as current-continuation-marks
and continuation-mark-set-first provide efficient access to marks; those functions are used,
for example, when accessing a dynamic binding, finding an exception handler, or reporting an
exception trace.

Continuation marks can be implemented as part of the delimited-continuation implementation,
but a library-based implementation does not perform well enough. Part of the problem is that using
call/cc to access the current continuation frame typically requires allocating a closure for the
argument to call/cc. Another problem is that call/cc reifies a continuation in a way that allows
it to be applied multiple times, while an implementation of with-continuation-mark needs only
a one-time continuation. Finally, a library implementation of with-continuation-mark is difficult
for the compiler to optimize—for example, to turn into a simple push and pop wrapper when that
could work for a body expression.
Instead of adding a with-continuation-mark form to Chez Scheme, we added the procedure

call-adding-continuation-attachment for associating a single attachment value to the current
continuation and the procedure call-with-current-continuation-attachment to access the
attachment value for the current continuation frame. Having a single value does not compose well
compared to a key–value mapping, but the key–value mapping can be added in a library layer.
Meanwhile, the compiler can recognize the continuation-attachment operations and treat them
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specially, much as it recognizes and treats specially call-with-values. The result is a continuation
marks implementation that performs on par with the existing Racket implementation.

Preserving Non-Tail Calls. Scheme and Racket guarantee that evaluating an expression E1 in tail
position with respect to an enclosing expression E2 does not extend the continuation of E1 (although
subexpressions of E2 may extend the continuation). Proper handling of tails calls is one of the big
enablers of compilation from Racket to Chez Scheme. While proper tail-call handling is a guarantee
of asymptotic behavior with respect to memory use, in a language with continuation marks, it
becomes a semantic guarantee about the marks that are associated with a continuation.
Conversely, an expression E1 that is not in tail position with respect to E2 must extend the

continuation as reflected via marks. To implement this non-tail guarantee for Racket programs,
we adjusted the Chez Scheme optimizer to prevent it from transforming an expression like (let
([x (f)]) x) to just (f) when nothing more is known about f or about the surrounding context.
Otherwise, “simplifying” the expression that way could change the behavior of continuation-mark
operations in tail position within f. If f is known not to adjust or inspect continuation marks before
returning, or if the let form is in a non-tail position with no wrapping with-continuation-marks,
then the transformation is allowed.

A second and related reason not to perform the transformation is that (f) may produce multiple
values. Depending on the surrounding context, the simplification may turn a result-arity exception
into a permitted production of multiple values. Racket must reliably produce an exception in that
case, so Chez Scheme’s optimizer has been constrained to perform the transformation only when it
will affect neither result-arity checking nor continuation-mark operations.

4.2 Structures and Procedures
Racket and Chez Scheme support similar constructs for declaring new structure (i.e., record) types
and creating structure instances. They also support similar compiler optimizations for structure
predicates and selectors. Racket further imitates Chez Scheme’s case-lambda form to support
multi-arity procedures, so Racket’s core lambda and case-lambda forms map directly. However,
Racket supports additional reflective operations on procedures and structures, including an option
to make structure instances behave as procedures.

Applicable Structures and Other Properties. Racket supports an association of arbitrary properties
to structure types. The properties are specified when the structure type is created. Associating
property values to Chez Scheme structure types is straightforward, because they can be attached
to the property list of the globally unique symbol that is created for each structure type.
Racket’s built-in prop:procedure property enables an instance of a structure type with the

property to be applied in the same way as a function. The property value implements the structure
type’s application method. While a prop:procedure value can be associated to a structure type in
the same way as any other property value, modifying the behavior of function application is less
straightforward. Changing every function call in a Racket program to implement a general method
send would be prohibitively expensive.

To support structures that behave as functions, schemify changes
(proc-expr arg-expr ...)

to
((extract-procedure proc-expr) expr-expr ...)

for every function call where it cannot resolve proc-expr to a known procedure. For the vast
majority of function calls, the procedure is known, and no transformation is necessary. To better
support the cases that must be converted, extract-procedure can be inlined, at least for the fast
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path where the argument proc-expr produces a plain procedure. Overall, and especially since
Chez Scheme tends to outperform the old Racket implementation for function calls, a rarely needed
and inlined extract-procedure performs well enough.

Procedure Arity and Name Reflection. Given Racket’s original role as a pedagogic programming
environment, we committed early in the design to an operation that takes a procedure and reports
the procedure’s arity. That way, for example, a higher-order function like map can confirm that
a given function will work on the expected number of arguments before applying the function,
and it can report a helpful error message if not. Reflecting arity information has been helpful for
implementing contracts, too.
At the same time, exposing a procedure’s arity means that a wrapper procedure like (lambda

args (apply f args)) works less well, because the wrapper claims to accept any number of
arguments, although it will only succeed with arguments accepted by f. To compensate, Racket
provides a procedure-reduce-arity function to further wrap a procedure, but with amore specific
arity. The pattern for wrapping a procedure f becomes
(procedure-reduce-arity (lambda args (apply f args))

(procedure-arity f))

While arity inspection and reduction could be implemented through applicable structures, making
applicable structures so pervasive would substantially reduce performance. Instead, we extended
Chez Scheme with a way to report a procedure’s arity, and we added a combination of a wrapper
generator and procedure-reduce-arity to support efficient redirection of a procedure call to
another procedure (i.e., without allocating a list of arguments, as the example wrapper does).

The newly built-in wrapper facility cannot, unfortunately, improve the performance of applicable
structures. Chez Scheme’s representation of procedure references and structure references involve
different tag bits and object layouts, so it does not work to use a wrapper procedure as a structure
instance.

Procedure Approximate Result Arity. Racket’s contract system uses arity reflection to enforce con-
tracts, and it uses operations like procedure-reduce-arity to generate wrapped procedures to
enforce higher-order contracts. To reduce the amount of wrapping that it performs, the contract
system benefits from an operation that reports dynamically when a procedure is known to produce
a single result value, even if that report is conservative. We adjusted Chez Scheme’s compiler to
(often) detect single-valued procedure bodies and record that result for run-time reporting.

4.3 Core Datatypes
Immutable Datatypes. Since they’re both descendants of Scheme, Chez Scheme and Racket agree
on most of their core datatypes. Unlike Scheme, pairs in Racket are immutable, but enforcing that
property for Racket on Chez Scheme is simply a matter of withholding the set-car! and set-cdr!
operations from Racket programs. Racket provides mutable pairs as a separate datatype.

Racket includes bothmutable and immutable variants of Unicode strings, byte strings, vectors, and
boxes. The same accessors, such as string-ref, must work on bothmutable and immutable variants,
while mutators like string-set! must be provided for mutable variants. Simply withholding the
mutators does not work, and adding a wrapper to distinguish different variants would be expensive.
We adjusted Chez Scheme to include a mutability bit in the type tags for strings, bytes strings,
vectors, and boxes. This extra bit imposes a low extra cost, because testing or non-testing for the
bit mostly can be folded into existing masks and tests.

Chaperones and Impersonators. Racket’s chaperones and impersonators support interposition on
some primitive-datatypes operations, such as procedure application and access or update in hash
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tables (Strickland et al. 2012). For Racket CS, chaperones are implemented as a library in the
“control+structs” layer. Procedure-application chaperoning works through applicables structures.
To support interposition on operations like vector-ref, the library exports a replacement version
that inlines a vector? check plus vector-ref selection for the fast path and dispatches to a slow
path for the general case.

Hash Tables. Racket’s mutable hash tables mostly can be implemented in terms of Chez Scheme’s
hash tables, but implementing stream-like iteration requires a new operation to Chez Scheme to
access a bounded number of keys in time proportional to the bound. Racket’s persistent hash tables
are implemented as a library, where eq?-based tables rely on a global, mutable hash table with
weakly held keys to map a value to a counter-based hash code, simulating an allocation address.

4.4 Numbers
Racket and Chez Scheme both implement the full Scheme numeric tower, including exact and
inexact variants of rational and complex numbers. The two systems are compatible to an especially
high degree, even down to choices that are not specified by the standard, such as the result of
multiplication between an exact 0 and an inexact number. We made small changes to both Chez
Scheme and the old Racket implementation to bring them further into line.
After those changes, some differences remained. One is whether multi-argument * and / have

a specified association; Racket specifies left-associative addition and multiplication, while Chez
Scheme leaves the association unspecified. Racket equates all IEEE NaN representations with eqv?,
while Chez Scheme equates only bit-identical NaNs. Racket preserves object-identity of inexact
reals as detectable by eq?, while Chez Scheme leaves eq? on such numbers unspecified. Racket CS
would probably work well enough if we left those differences in place, but the patches to adjust
Chez Scheme are small and worthwhile if we have to patch for other reasons.

Finally, in addition to double-precision floating-point numbers, Racket supports single-precision
and (on some platforms) extended-precision numbers. Those number variants are infrequently
used, and we can do without them for now.

4.5 Compilation
We made a small change to Chez Scheme’s compiler to accept eagerly computed line and column
locations, instead of always computing them on demand from file offsets. We also adjusted Chez
Scheme to allow the recompilation of certain libraries without necessarily having to recompile uses
of those libraries; that adjustment facilitates the development of the Racket CS core.
More significantly, we added a type-reconstruction pass to the compiler to enable some opti-

mizations. For example, in the pair-reversing expression (cons (cdr p) (car p)), a successful
evaluation of (cdr p) implies that p is a pair, so a non-checking variant of car can be used for
the second operation of p. Previous work added a type reconstruction pass to Chez Scheme al-
ready (Adams 2013), but that implementation has not been integrated into the Chez Scheme release.
Our new pass is less ambitious, but it enables the optimizations that the old Racket implementation
performs, which ensures more consistent performance in a switch to Racket CS.

4.6 Memory Management
Ephemerons, Ordered and Unordered Finalization. In addition toweak boxes, which are easily mapped
to Chez Scheme’s weak pairs, Racket supports ephemerons (Hayes 1997), which are a kind of “and”
for weak references. The main use of ephemerons is to solve the key-in-value problem for weak
mappings. We added ephemeron pairs to Chez Scheme in a way that avoids quadratic worst-case
behavior.
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Racket’s main finalization construct is directly based on Chez Scheme’s guardians (Dybvig et al.
1993). Guardians implement unordered finalization, where two objects that are inaccessible can
both be finalized, even if each has a finalizer that refers to the other object. Our experience is that
unordered finalization is the correct design for most purposes. To implement modules that are
backed by foreign libraries, however, ordered finalization is also useful, where a reference to an
object from a finalizer will prevent that object from being finalized. Ordering allows a foreign-object
finalizer to run only when an object is truly inaccessible, and not potentially accessible from a
client-program finalizer.

The current Racket implementation provides a limited and unsatisfying form of ordered finaliza-
tion that is hard-wired to three levels of finalization; references from finalizers at level N prevent
finalization at level N+1, while finalization is unordered within each level. For Racket CS, we have
instead extended Chez Scheme with ordered guardians as an alternative to unordered guardians;
a reference from a finalizer in any guardian prevents an object from being finalized through an
ordered guardian. This new design is more general, and it works for Racket because existing
foreign-library bindings accommodate either an unordered or leveled interpretation of finalization.

Memory Accounting, Debugging Backreferences, Phantom Byte Strings, and Incremental Garbage
Collection. Programs that are developed in DrRacket run on the same Racket instance as DrRacket
itself. To prevent a program under development from consuming so muchmemory that it terminates
the programming environment, Racket supports allocation limits that are tied to a custodian (Wick
and Flatt 2004), which is a language construct that abstracts the concept of a process-like resource
domain (Flatt et al. 1999). Chez Scheme includes a compute-size debugging function computes the
memory use from a given starting object. We extended that function to add compute-size-deltas,
which implements the ordering that is needed to assign charges to the correct custodian within a
tree of Racket threads.

Racket’s dump-gc-stats helps in debugging resource leaks, and while Chez Scheme provides a
similar compute-composition function, the dump-gc-stats function is more useful in cases where
the relevant root object is not apparent; we found it simplest to extend Chez Scheme’s garbage
collector to more directly support dump-gc-stats. Racket’s phantom byte strings provide a way
to tie external, finalized allocation to Scheme objects for the purpose of memory accounting and
triggering garbage collections; adding phantom byte strings to Chez Scheme was straightforward.
Racket’s garbage collector supports an incremental mode, which is particularly useful for classroom
exercises that involve interactive games, but we do without it for now.

4.7 Foreign-Function Interface
Interacting with C-implemented libraries in modern Racket is driven from Racket code using a
foreign-function interface (Barzilay and Orlovsky 2004), as opposed to driven by glue code that is
written in C. This evolution means that Racket looks similar to Chez Scheme in its foreign-function
interface (FFI). Still, a FFI tends to expose some of a host language’s implementation details, and
incompatibility between Racket and Racket CS seems inevitable. A typical Racket binding to foreign
libraries needs adjustments to work in both implementations. Adapting bindings in the main
distribution required only modest work, where the wrapped libraries include OpenSSL, libjpeg,
libpng, Pango, Cairo, GTK+, Cocoa, Windows system libraries, and more.

Foreign-Pointer Representation and Object Locking. Chez Scheme distinguishes foreign pointers
from Scheme objects, while Racket’s notion of pointers for foreign calls allows a Racket byte string
to be used interchangeably with a foreign pointer, and it also supports the allocation of raw arrays
that are not constrained by a pointer-tagging regime. The FFI bridge for Racket CS can mostly
manage these differences, but it must reject certain kinds of pointer coercions that cannot work
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on Chez Scheme. Another difference is that Racket’s garbage collector supports an allocation
arena of objects that will never be moved by garbage collection but will be reclaimed when they
become inaccessible. Chez Scheme supports locking any allocated object, which prevents it both
from moving and from being reclaimed. To work with both systems, Racket libraries must use an
abstraction that fits both constraints.

C struct Arguments and Returns, Foreign-Thread Activation, and Compare-and-Set. While Chez
Scheme provides a rich set of features in its FFI, some corners were not yet covered, including
support for C functions that have struct arguments and return values. Chez Scheme supports OS-
level threads, but it was not yet set up to handle calls into Scheme from previously unregistered OS
threads, and no compare-and-set operationwas exposed to support simple lock-free synchronization.
Additions to cover those gaps have been merged into the main Chez Scheme implementation.

Exported C Interface. Both Racket and Chez Scheme provide an interface from C functions to call
directly into the runtime system, instead of the other way around. Due to its history, Racket’s
exported C interface is large. Most of it could be mapped to Chez Scheme with the help of supporting
Racket/Scheme code, but not all of it. We have made no effort to translate Racket’s C API for Racket
CS, and we currently have no plans to do so.

5 PERFORMANCE
Figure 4 compares a few facets of performance among Chez Scheme, Racket, and Racket CS.3
The first two plots show relative performance for a set of commonly used Scheme benchmarks,
and the results provide evidence that our changes to Chez Scheme have a negligible effect on its
performance; Racket CS mostly maintains that performance, except where it introduces a distinct
datatype to support mutable pairs (which Racket programmers rarely use). The third plot reports
performance on benchmarks derived from the Computer Language Benchmarks Game over its
history; Racket CS performs less well here, where the benchmarks rely more heavily on the newly
implemented Racket CS layers. Similar to these benchmarks, production Racket programs tend to
perform somewhere between slightly faster and 50% slower on Racket CS.
The biggest performance differences come from longer compile times, larger code sizes, and

longer load times—all of which are related to generating machine code instead of bytecode. The
plots in the bottom row of figure 4 illustrate the differences and draw out some of the reasons. For
example, load time in the current Racket implementation benefits significantly from lazy parsing of
bytecode. Working with bytecode also reduces the memory footprint of programs like DrRacket.
Forcing both eager parsing of bytecode and JIT compilation closes some of the gap. The next-to-last
plot in the figure shows a large difference in time required to build the Racket distribution from
source; “cheap code” in the current Racket implementation has encouraged the generation of lots
of code, often via macros, and the difference in build times reflects various compilation and code
costs combined.
Overall, reduced end-to-end performance relative to the current Racket version prevents us

from switching immediately to Racket CS as the default implementation. We expect to resolve the
difference over time through some combination of further performance improvements and revised
expectations.

6 STATUS AND OUTLOOK
After two years of work, Racket CS currently passes more than 99.8% of the 813,650 tests in the
core Racket test suite. Of the remaining tests, 1,485 represent acceptable differences (where we

3We provide additional measurements as supplementary material.
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Scheme benchmarks / immutable pairs
geometric mean of run time relative to Racket

CS x0.83x0.83x0.83

CS′ x0.83x0.83x0.83

R/CS x0.85x0.85x0.85

R x1x1x1

Scheme benchmarks / mutable pairs
geometric mean of run time relative to Racket

CS x0.62x0.62x0.62

CS′ x0.61x0.61x0.61

R/CS x1.26x1.26x1.26

R x1x1x1

Shootout benchmarks
geometric mean of run time relative to Racket

R/CS x1.34x1.34x1.34

R x1x1x1

racket -l racket
startup+load time

R/CS 483 msec483 msec483 msec

R 263 msec263 msec263 msec

R/all 408 msec408 msec408 msec

racket -cl racket
compile from source time

R/CS 57.26 seconds57.26 seconds57.26 seconds

R 31.7 seconds31.7 seconds31.7 seconds

R/all 36.39 seconds36.39 seconds36.39 seconds

DrRacket
startup+exit peak memory use

671 MB671 MB671 MB

R/CS

431 MB431 MB431 MB

R
511 MB511 MB511 MB

R/all
688 MB688 MB688 MB

R/jit!

Build distribution
build time

R/CS 152 minutes152 minutes152 minutes

R 65 minutes65 minutes65 minutes

Build distribution
peak memory use

1239 MB1239 MB1239 MB

R/CS

1031 MB1031 MB1031 MB

R

Fig. 4. Performance comparisons. Shorter is better. CS = unmodifed Chez Scheme, CS′ = modified
Chez Scheme, R/CS = Racket CS, R = Racket, R/all = Racket with lazy bytecode loading disabled,
R/jit! = JIT forced on all bytecode. Benchmarks results show a geometric mean of run times
relative to Racket run times, taking the median of three runs for each benchmark. Benchmark sources

are in the racket-benchmarks package in the Racket GitHub repository. Using Chez Scheme 9.5.1 commit 6d44fee2b3

at github:cicso/ChezScheme, modified as commit a60e6049ac at github:racket/ChezScheme, and Racket 7.2.0.5 as

commit 66f7e0c3e3 at github:racket/racket. Measured on an Intel Core i7-2600 3.4GHz processor running 64-bit Linux.

have parameterized the test suite) and 33 failures. The failures involve complex numbers with NaN
and infinity components, error-message differences, and other corners that have little effect on real
programs. Success rates are similar for other Racket libraries that we have tried. DrRacket works
fully running on Chez Scheme, and Racket CS can build itself from source to full-distribution form.

If our task were “compile Racket to an existing target,” then we would not have achieved such a
high degree of compatibility. Unlike projects where the goal is to compile to the JVM, JavaScript, or
WebAssembly, we have taken the liberty of modifying Chez Scheme to make it an easier target for
Racket. Because we are willing to maintain Chez Scheme and any patches needed for Racket CS,
and because that maintenance is preferable to working on Racket’s existing implementation, this
approach meets our goal of moving Racket to a more maintainable footing.
Our evidence for improved maintainability is anecdotal, but we consistently find working on

Racket CS easier. For example, the new implementation of delimited continuations became useful
almost immediately as an oracle to track down bugs in the previous, decade-old implementation.
The new I/O implementation performed poorly at first, but we were able to refactor internal
representations and protocols—building a new little language extension for objects, with just
the right properties for the representations—in a matter of days, essentially catching up to the
performance of the old implementation. Rewriting the macro expander in Racket (which was a
prerequisite for porting to Chez Scheme) enlarged the number of people willing to modify the
expander from 2 people over 16 years to 6 people over 2 years. Meanwhile, the fact that changes and
patches to Chez Scheme were possible speaks to the flexibility and quality of its implementation.

Although our report has concentrated on the obstacles to building Racket on Chez Scheme, the
benefits were far more numerous. The key benefit is starting with a robust core for a functional
language: closures, compact data representations with full arithmetic, continuations bounded
only by heap size, proper handling of tail calls, precise liveness for variables with safe-for-space
optimizations, and compilation to high-quality machine code. Racket also relies on access to unsafe
operations—to support external optimizations, which are sometimes driven by Typed Racket—plus
a capable and convenient foreign-function interface. With the basics taken care of, we were able to
concentrate on the details.
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