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Sibling Food-Sharing Protocol

* By inspection, the protocol is fair

* No parental supervision required
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Sharing among Processes

e Queue should be safe and fair

« Should require no kernel supervision
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synchroni zed
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Thread. stop O synchroni zed isn't enough

[1 Java has no Thr ead. st op



Why Terminate?

e Execute code in a programming environment (DrScheme)
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Why Terminate?

e Execute code in a programming environment (DrScheme)

e Cancel actions that allocate resources (HTML browser)
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Why Terminate?

e Execute code in a programming environment (DrScheme)
e Cancel actions that allocate resources (HTML browser)

e Stop misbehaving serviets (web server)
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Building Kill-Safe Abstractions
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—but generally understood
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Building Kill-Safe Abstractions

abstraction Programmer effort
—but generally understood

thread-safe
abstraction

Programmer effort kill-safe
—the subject of this talk thread-safe

abstraction
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Building Kill-Safe Abstractions

abstraction Start with Concurrent ML
[Reppy 88]

thread-safe
abstraction

Add MzScheme's custodians kill-safe
and a little more thread-safe

abstraction



Sharing in Concurrent ML




Sharing in Concurrent ML

@
@
@



Sharing in Concurrent ML




Sharing in Concurrent ML

K%

Abstraction-as-process naturally supports termination
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Sharing in Concurrent ML

K%

Abstraction-as-process naturally supports termination

Remaining problem: who controls the abstraction's process?
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Managing Processes and Threads
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Managing Processes and Threads
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Thread-Safe Abstractions

A language to support abstractions:
e Concurrent ML primitives for thread communication

» Custodians for process hierarchy

Each abstraction:

 Manager thread for state

41



Towards Kill Safety with Custodians



Towards Kill Safety with Custodians
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Kill Safety through Joint Custody

g@ Queue runs exactly

as long as servlets
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Kill-Safe Abstractions

A language to support abstractions:
e Concurrent ML primitives for thread communication
» Custodians for process hierarchy

» Operation to grant a thread another custodian

Each abstraction:
 Manager thread for state

e Each action grants custodian to manager thread
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Non-Solution #1 — Atomic Region
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Non-Solution #2 — Disjoint Process
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Solution — Joint Custody
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Details (See Paper)

o Custodians granted throught hr ead- r esune
« CML's guar d- evt a natural place fort hr ead-r esune
e Improved nack- guar d- evt for two-step protocols

o Kill-safe does not always imply break-safe, nor vice-versa
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A Thread-Safe Queue

(define-struct safe-q
(put-ch get-ch))

(define (safe-queue)
(define g (queue))
(define get-ch (channel))
(define put-ch (channel))
(define (g-1oo0p)

(sync
(choi ce- evt
(wr ap- evt

(channel -send get-ch (peek q))
(l'ambda () (get q)))
(wr ap- evt
(channel -recv put-ch)
(l'ambda (v) (put q v)))))
(g-1o00p))
(spawn g-| oop)
(make-safe-q put-ch get-ch))

(define (safe-get
(channel -recv
(saf e-g-get-ch

(define (safe-put
(channel - send
(saf e-g- put-ch

sq)
sq)))
sqg V)

sq) Vv))
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A Kill-Safe Queue

(define-struct safe-q (define (safe-get sq)
(manager-t put-ch get-ch)) (resune sq)
(channel -recv
(define (safe-queue) (safe-g-get-ch sq)))
(define g (queue))
(define get-ch (channel)) (define (safe-put sq v)
(define put-ch (channel)) (resune sq)
(define (g-1oo0p) (channel - send
(sync (safe-q-put-ch sq) v))
(choi ce- evt
(wr ap- evt (define (resune sq)
(channel -send get-ch (peek Qq)) (t hread-resune
(lanbda () (get q))) (saf e- g- ranager-t sq)
(wr ap- evt (current-thread)))

(channel -recv put-ch)

(lambda (v) (put q v)))))

(g-1o00p))
(define manager-t (spawn g-1oo0p))
(make-saf e-q manager-t put-ch get-ch))
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