Kill-Safe Synchronization Abstractions

Matthew Flatt Robert Bruce Findler
University of Utah University of Chicago

Sibling Food-Sharing Protocol

Sibling Food-Sharing Protocol

Sibling Food-Sharing Protocol

Sibling Food-Sharing Protocol

Sibling Food-Sharing Protocol

Sibling Food-Sharing Protocol

Sibling Food-Sharing Protocol

* By inspection, the protocol is fair

* No parental supervision required

Sharing among Processes

Sharing among Processes

>

Sharing among Processes

Sharing among Processes

Sharing among Processes

e Queue should be safe and fair

« Should require no kernel supervision

Sharing in Java

synchroni zed

Sharing in Java

synchroni zed

Thread. stop O synchroni zed isn't enough

Sharing in Java

synchroni zed

@

Thread. stop O synchroni zed isn't enough

Sharing in Java

synchroni zed

@

Thread. stop O synchroni zed isn't enough

Sharing in Java

synchroni zed

@

Thread. stop O synchroni zed isn't enough

[1 Java has no Thr ead. st op

Why Terminate?

e Execute code in a programming environment (DrScheme)

g ré; DrScheme File Edit Show Language Scheme Special Windows Help

000

homework.scm - DrScheme

themrk.scm'

[define .1

[‘: Step

[Q Check Syntax

['r Execute [@ Brealk

(define (Chas-zero? 1)
(cond
[Cempty? 1) false]
[(cons? 1) (or (zero? (first 1))

Chas-zero? (rest 1)))])) =«

v

>

Welcome to DrScheme, version 202.
Language: Beginning Student.

3.3

Read [Write not running

5

19

Why Terminate?

e Execute code in a programming environment (DrScheme)

e Cancel actions that allocate resources (HTML browser)

- é Help Desk File Edit Search Windows Help
Help Desk

3} EHome :-. " University of Utah... |:! .‘iﬂ}

0

Admissions »
.
!'_

Loading image www.google.com/logos /Logo_40wht.qgif...

" Keyword or index entry | :] ' Containing match

20

Why Terminate?

e Execute code in a programming environment (DrScheme)
e Cancel actions that allocate resources (HTML browser)

e Stop misbehaving serviets (web server)

0

Building Kill-Safe Abstractions

22

abstraction

Building Kill-Safe Abstractions

Programmer effort
—but generally understood

thread-safe
abstraction

kill-safe
thread-safe
abstraction

23

Building Kill-Safe Abstractions

abstraction Programmer effort
—but generally understood

thread-safe
abstraction

Programmer effort kill-safe
—the subject of this talk thread-safe

abstraction

24

Building Kill-Safe Abstractions

abstraction Start with Concurrent ML
[Reppy 88]

thread-safe
abstraction

kill-safe
thread-safe
abstraction

Building Kill-Safe Abstractions

abstraction Start with Concurrent ML
[Reppy 88]

thread-safe
abstraction

Add MzScheme's custodians kill-safe
and a little more thread-safe

abstraction

Sharing in Concurrent ML

Sharing in Concurrent ML

@
@
@

Sharing in Concurrent ML

Sharing in Concurrent ML

K%

Abstraction-as-process naturally supports termination

30

Sharing in Concurrent ML

K%

Abstraction-as-process naturally supports termination

Remaining problem: who controls the abstraction's process?

31

Managing Processes and Threads

d Threads

Managing Processes an

Managing Processes and Threads

»
K
o g 3 g 3 g 5
33 DTS SRS S S {4

capability to

= custodian =
execute

Managing Processes and Threads

/\

e e .
55 8 5SS

capability to

= custodian =
execute

Managing with Custodians

Managing with Custodians

Managing with Custodians

/\

3 e e
85 05 Y R8s

Managing with Custodians

Managing with Custodians

/\

3 e e
85 05 Y S

g@ Queue terminated with servlet

N

Thread-Safe Abstractions

A language to support abstractions:
e Concurrent ML primitives for thread communication

» Custodians for process hierarchy

Each abstraction:

 Manager thread for state

41

Towards Kill Safety with Custodians

Towards Kill Safety with Custodians

Towards Kill Safety with Custodians

o o o

B9 05 88 oSS
§ Not kill-safe among servlets

=

Kill Safety through Joint Custody

e e o o
S I 1 S S TR I

Kill Safety through Joint Custody

O\,
I

o o o

o B
§

Kill Safety through Joint Custody

e e o o
S I 1 S S TR I

Kill Safety through Joint Custody

Kill Safety through Joint Custody

g@ Queue runs exactly

as long as servlets

N—

have Multiple Custodians

Why a Thread can

have Multiple Custodians

Why a Thread can

have Multiple Custodians

Why a Thread can

have Multiple Custodians

Why a Thread can

Why a Thread can have Multiple Custodians

[\

P N

2 3 2 3 2 3

SRS
4

Why a Thread can have Multiple Custodians

'\

PN

2 3 2 3 2 3

SEERSEE
4

Queue is only mostly dead

Why a Thread can have Multiple Custodians

'\

PN

2 3 2 3 2 3

56 055 TISS [RS8
{

Queue is only mostly dead

Why a Thread can have Multiple Custodians

/\

3 e e
S EERDE I

Use queue I grant custodian

Kill-Safe Abstractions

A language to support abstractions:
e Concurrent ML primitives for thread communication
» Custodians for process hierarchy

» Operation to grant a thread another custodian

Each abstraction:
 Manager thread for state

e Each action grants custodian to manager thread

58

Non-Solution #1 — Atomic Region

0

Non-Solution #1 — Atomic Region

N

e e o o
S) TS TR I

Queue might harm
other servlets

S

Non-Solution #2 — Disjoint Process

'\

Non-Solution #2 — Disjoint Process

o o o

S B
é

Non-Solution #2 — Disjoint Process

Non-Solution #2 — Disjoint Process

#3 — Meta-Servlet

-Solution

#3 — Meta-Servlet

-Solution

Solution — Joint Custody

0

Details (See Paper)

o Custodians granted throught hr ead- r esune
« CML's guar d- evt a natural place fort hr ead-r esune
e Improved nack- guar d- evt for two-step protocols

o Kill-safe does not always imply break-safe, nor vice-versa

68

A Thread-Safe Queue

(define-struct safe-q
(put-ch get-ch))

(define (safe-queue)
(define g (queue))
(define get-ch (channel))
(define put-ch (channel))
(define (g-1oo0p)

(sync
(choi ce- evt
(wr ap- evt

(channel -send get-ch (peek q))
(l'ambda () (get q)))
(wr ap- evt
(channel -recv put-ch)
(l'ambda (v) (put q v)))))
(g-1o00p))
(spawn g-| oop)
(make-safe-q put-ch get-ch))

(define (safe-get
(channel -recv
(saf e-g-get-ch

(define (safe-put
(channel - send
(saf e-g- put-ch

sq)
sq)))
sqg V)

sq) Vv))

69

A Kill-Safe Queue

(define-struct safe-q (define (safe-get sq)
(manager-t put-ch get-ch)) (resune sq)
(channel -recv
(define (safe-queue) (safe-g-get-ch sq)))
(define g (queue))
(define get-ch (channel)) (define (safe-put sq v)
(define put-ch (channel)) (resune sq)
(define (g-1oo0p) (channel - send
(sync (safe-q-put-ch sq) v))
(choi ce- evt
(wr ap- evt (define (resune sq)
(channel -send get-ch (peek Qq)) (t hread-resune
(lanbda () (get q))) (saf e- g- ranager-t sq)
(wr ap- evt (current-thread)))

(channel -recv put-ch)

(lambda (v) (put q v)))))

(g-1o00p))
(define manager-t (spawn g-1oo0p))
(make-saf e-q manager-t put-ch get-ch))

70

