On this page:
3.1 Overview of Rack  Unit
3.2 Checks
check-eq?
check-not-eq?
check-eqv?
check-not-eqv?
check-equal?
check-not-equal?
check-pred
check-=
check-true
check-false
check-not-false
check-exn
check-not-exn
check-regexp-match
check-match
check
fail
3.2.1 Augmenting Information on Check Failure
check-info
make-check-name
make-check-params
make-check-location
make-check-expression
make-check-message
make-check-actual
make-check-expected
with-check-info*
with-check-info
3.2.2 Custom Checks
define-simple-check
define-binary-check
define-check
fail-check
3.3 Compound Testing Forms
3.3.1 Test Cases
test-begin
test-case
test-case?
3.3.1.1 Shortcuts for Defining Test Cases
test-check
test-pred
test-equal?
test-eq?
test-eqv?
test-=
test-true
test-false
test-not-false
test-exn
test-not-exn
3.3.2 Test Suites
test-suite
make-test-suite
test-suite?
3.3.2.1 Utilities for Defining Test Suites
define-test-suite
define/  provide-test-suite
3.4 Test Control Flow
before
after
around
delay-test
3.5 Miscellaneous Utilities
require/  expose
dynamic-require/  expose
3.6 User Interfaces
3.6.1 Textual User Interface
run-tests
3.6.2 Graphical User Interface
test/  gui
make-gui-runner

3 RackUnit API

 (require rackunit) package: rackunit-lib

3.1 Overview of RackUnit

There are three basic concepts in RackUnit:

3.2 Checks

Checks are the basic building block of RackUnit. A check checks some condition. If the condition holds the check evaluates to (void). If the condition doesn’t hold the check raises an instance of exn:test:check with information detailing the failure.

Although checks are implemented as macros, which is necessary to grab source location, they are conceptually functions (with the exception of check-match below). This means, for instance, checks always evaluate their arguments. You can use checks as first class functions, though you will lose precision in the reported source locations if you do so.

The following are the basic checks RackUnit provides. You can create your own checks using define-check.

procedure

(check-eq? v1 v2 [message])  void?

  v1 : any
  v2 : any
  message : string? = ""
(check-not-eq? v1 v2 [message])  void?
  v1 : any
  v2 : any
  message : string? = ""
(check-eqv? v1 v2 [message])  void?
  v1 : any
  v2 : any
  message : string? = ""
(check-not-eqv? v1 v2 [message])  void?
  v1 : any
  v2 : any
  message : string? = ""
(check-equal? v1 v2 [message])  void?
  v1 : any
  v2 : any
  message : string? = ""
(check-not-equal? v1 v2 [message])  void?
  v1 : any
  v2 : any
  message : string? = ""
Checks that v1 is equal (or not equal) to v2, using eq?, eqv?, or equal?, respectively. The optional message is included in the output if the check fails.

For example, the following checks all fail:

> (check-eq? (list 1) (list 1) "allocated data not eq?")

--------------------

FAILURE

actual:     (1)

expected:   (1)

name:       check-eq?

location:   (eval 3 0 3 1)

expression: (check-eq? (list 1) (list 1))

message:    "allocated data not eq?"

Check failure

--------------------

> (check-not-eq? 1 1 "fixnums are eq?")

--------------------

FAILURE

name:       check-not-eq?

location:   (eval 4 0 4 1)

expression: (check-not-eq? 1 1)

params:     (1 1)

message:    "fixnums are eq?"

Check failure

--------------------

> (check-eqv? 1 1.0 "not eqv?")

--------------------

FAILURE

actual:     1

expected:   1.0

name:       check-eqv?

location:   (eval 5 0 5 1)

expression: (check-eqv? 1 1.0)

message:    "not eqv?"

Check failure

--------------------

> (check-not-eqv? 1 1 "integers are eqv?")

--------------------

FAILURE

name:       check-not-eqv?

location:   (eval 6 0 6 1)

expression: (check-not-eqv? 1 1)

params:     (1 1)

message:    "integers are eqv?"

Check failure

--------------------

> (check-equal? 1 1.0 "not equal?")

--------------------

FAILURE

actual:     1

expected:   1.0

name:       check-equal?

location:   (eval 7 0 7 1)

expression: (check-equal? 1 1.0)

message:    "not equal?"

Check failure

--------------------

> (check-not-equal? (list 1) (list 1) "equal?")

--------------------

FAILURE

name:       check-not-equal?

location:   (eval 8 0 8 1)

expression: (check-not-equal? (list 1) (list 1))

params:     ((1) (1))

message:    "equal?"

Check failure

--------------------

procedure

(check-pred pred v [message])  void?

  pred : (-> any any)
  v : any
  message : string? = ""
Checks that pred returns a value that is not #f when applied to v. The optional message is included in the output if the check fails. The value returned by a successful check is the value returned by pred.

For example, the following check passes:
> (check-pred string? "I work")
The following check fails:
> (check-pred number? "I fail")

--------------------

FAILURE

name:       check-pred

location:   (eval 10 0 10 1)

expression: (check-pred number? "I fail")

params:     (#<procedure:number?> "I fail")

Check failure

--------------------

procedure

(check-= v1 v2 epsilon [message])  void?

  v1 : any
  v2 : any
  epsilon : number?
  message : string? = ""
Checks that v1 and v2 are numbers within epsilon of one another. The optional message is included in the output if the check fails.

For example, the following check passes:

> (check-= 1.0 1.01 0.02 "I work")
The following check fails:
> (check-= 1.0 1.01 0.005 "I fail")

--------------------

FAILURE

name:       check-=

location:   (eval 12 0 12 1)

expression: (check-= 1.0 1.01 0.005)

params:     (1.0 1.01 0.005)

message:    "I fail"

Check failure

--------------------

procedure

(check-true v [message])  void?

  v : any
  message : string? = ""
(check-false v [message])  void?
  v : any
  message : string? = ""
(check-not-false v [message])  void?
  v : any
  message : string? = ""
Checks that v is #t, is #f, or is not #f, respectively. The optional message is included in the output if the check fails.

For example, the following checks all fail:

> (check-true 1)

--------------------

FAILURE

name:       check-true

location:   (eval 13 0 13 1)

expression: (check-true 1)

params:     (1)

Check failure

--------------------

> (check-false 1)

--------------------

FAILURE

name:       check-false

location:   (eval 14 0 14 1)

expression: (check-false 1)

params:     (1)

Check failure

--------------------

> (check-not-false #f)

--------------------

FAILURE

name:       check-not-false

location:   (eval 15 0 15 1)

expression: (check-not-false #f)

params:     (#f)

Check failure

--------------------

procedure

(check-exn exn-predicate thunk [message])  void?

  exn-predicate : (or/c (-> any any/c) regexp?)
  thunk : (-> any)
  message : string? = ""
Checks that thunk raises an exception and that either exn-predicate returns #t if it is a function, or that it matches the message in the exception if exn-predicate is a regexp. In the latter case, the exception raised must be an exn:fail?. The optional message is included in the output if the check fails. A common error is to use an expression instead of a function of no arguments for thunk. Remember that checks are conceptually functions.

For example, the following checks succeed:

> (check-exn
   exn:fail?
   (lambda ()
     (raise (make-exn:fail "Hi there"
                           (current-continuation-marks)))))
> (check-exn
   exn:fail?
   (lambda ()
     (error 'hi "there")))

The following check fails:

> (check-exn exn:fail?
             (lambda ()
               (break-thread (current-thread))))

--------------------

ERROR

user break

--------------------

The following example is a common mistake. The call to error is not within a lambda, so it bypasses check-exn entirely.

; Forgot to wrap the expression in a thunk. Don't do this!
> (check-exn exn:fail?
             (error 'hi "there"))

hi: there

procedure

(check-not-exn thunk [message])  void?

  thunk : (-> any)
  message : string? = ""
Checks that thunk does not raise any exceptions. The optional message is included in the output if the check fails.

> (check-not-exn (λ () 1))
> (check-not-exn (λ () (car '())))

--------------------

FAILURE

message:    "Exception raised"

exception-me"car: contract violation\n  expected: pair?\n  given: '()"

exception:  #(struct:exn:fail:contract "car: contract violation\n  expected: pair?\n  given: '()" #<continuation-mark-set>)

name:       check-not-exn

location:   (eval 21 0 21 1)

expression: (check-not-exn (λ () (car (quote ()))))

params:     (#<procedure:temp79>)

Check failure

--------------------

> (check-not-exn (λ () (/ 1 0)) "don't divide by 0")

--------------------

FAILURE

exception-me"/: division by zero"

exception:  #(struct:exn:fail:contract:divide-by-zero "/: division by zero" #<continuation-mark-set>)

name:       check-not-exn

location:   (eval 22 0 22 1)

expression: (check-not-exn (λ () (/ 1 0)))

params:     (#<procedure:temp82>)

message:    "don't divide by 0"

Check failure

--------------------

procedure

(check-regexp-match regexp string)  void?

  regexp : regexp?
  string : string?
Checks that regexp matches the string.

For example, the following check succeeds:

> (check-regexp-match "a+bba" "aaaaaabba")

The following check fails:

> (check-regexp-match "a+bba" "aaaabbba")

--------------------

FAILURE

name:       check-regexp-match

location:   (eval 24 0 24 1)

expression: (check-regexp-match "a+bba" "aaaabbba")

params:     ("a+bba" "aaaabbba")

Check failure

--------------------

syntax

(check-match v pattern)

(check-match v pattern pred)
A check that pattern matches on the test value. Matches the test value v against pattern as a match clause. If no pred is provided, then if the match succeeds, the entire check succeeds. For example, this use succeeds:

> (check-match (list 1 2 3) (list _ _ 3))

This check fails to match:

> (check-match (list 1 2 3) (list _ _ 4))

--------------------

FAILURE

params:     (#f)

name:       check-match

location:   (eval 26 0 26 1)

expression: (check-match (list 1 2 3) (list _ _ 4) #t)

actual:     (1 2 3)

expected:   (list _ _ 4)

Check failure

--------------------

If pred is provided, it is evaluated with the bindings from the match pattern. If it produces #t, the entire check succeeds, otherwise it fails. For example, this use succeeds, binding x in the predicate:

> (check-match (list 1 (list 3)) (list x (list _)) (odd? x))

This check fails because the pred fails:

> (check-match 6 x (odd? x))

--------------------

FAILURE

params:     (#f)

name:       check-match

location:   (eval 28 0 28 1)

expression: (check-match 6 x (odd? x))

actual:     6

expected:   x

Check failure

--------------------

This check fails because of a failure to match:

> (check-match (list 1 2) (list x) (odd? x))

--------------------

FAILURE

params:     (#f)

name:       check-match

location:   (eval 29 0 29 1)

expression: (check-match (list 1 2) (list x) (odd? x))

actual:     (1 2)

expected:   (list x)

Check failure

--------------------

procedure

(check op v1 v2 [message])  void?

  op : (-> any any any)
  v1 : any
  v2 : any
  message : string? = ""
The most generic check. Succeeds if op applied to v1 and v2 is not #f, otherwise raises an exception of type exn:test:check. The optional message is included in the output if the check fails.

For example, the following check succeeds:

> (check < 2 3)

The following check fails:

> (check memq 'pine '(apple orange pear))

--------------------

FAILURE

name:       check

location:   (eval 31 0 31 1)

expression: (check memq (quote pine) (quote (apple orange pear)))

params:     (#<procedure:memq> pine (apple orange pear))

Check failure

--------------------

procedure

(fail [message])  void?

  message : string? = ""
This check fails unconditionally. Good for creating test stubs that you intend to fill out later. The optional message is included in the output.

3.2.1 Augmenting Information on Check Failure

When a check fails it stores information including the name of the check, the location and message (if available), the expression the check is called with, and the parameters to the check. Additional information can be stored by using the with-check-info* function, and the with-check-info macro.

struct

(struct check-info (name value)
    #:extra-constructor-name make-check-info)
  name : symbol?
  value : any
A check-info structure stores information associated with the context of execution of a check.

The are several predefined functions that create check information structures with predefined names. This avoids misspelling errors:

procedure

(make-check-name name)  check-info?

  name : string?
(make-check-params params)  check-info?
  params : (listof any)
(make-check-location loc)  check-info?
  loc : 
(list/c any (or/c number? #f) (or/c number? #f)
            (or/c number? #f) (or/c number? #f))
(make-check-expression msg)  check-info?
  msg : any
(make-check-message msg)  check-info?
  msg : string?
(make-check-actual param)  check-info?
  param : any
(make-check-expected param)  check-info?
  param : any

procedure

(with-check-info* info thunk)  any

  info : (listof check-info?)
  thunk : (-> any)
Stores the given info on the check-info stack for the duration (the dynamic extent) of the execution of thunk

> (with-check-info*
   (list (make-check-info 'time (current-seconds)))
   (lambda () (check = 1 2)))

--------------------

FAILURE

name:       check

location:   (eval 32 0 32 1)

expression: (check = 1 2)

params:     (#<procedure:=> 1 2)

time:       1431802970

Check failure

--------------------

When this check fails the message

time: <current-seconds-at-time-of-running-check>

is printed along with the usual information on an check failure.

syntax

(with-check-info ((name val) ...) body ...)

The with-check-info macro stores the given information in the check information stack for the duration of the execution of the body expressions. Name is a quoted symbol and val is any value.

> (for-each
   (lambda (elt)
     (with-check-info
      (('current-element elt))
      (check-pred odd? elt)))
   (list 1 3 5 7 8))

--------------------

FAILURE

name:       check-pred

location:   (eval 33 0 33 1)

expression: (check-pred odd? elt)

params:     (#<procedure:odd?> 8)

current-elem8

Check failure

--------------------

When this test fails the message

current-element: 8

is displayed along with the usual information on an check failure.

3.2.2 Custom Checks

Custom checks can be defined using define-check and its variants. To effectively use these macros it is useful to understand a few details about a check’s evaluation model.

Firstly, a check should be considered a function, even though most uses are actually macros. In particular, checks always evaluate their arguments exactly once before executing any expressions in the body of the checks. Hence if you wish to write checks that evaluate user defined code that code must be wrapped in a thunk (a function of no arguments) by the user. The predefined check-exn is an example of this type of check.

It is also useful to understand how the check information stack operates. The stack is stored in a parameter and the with-check-info forms evaluate to calls to parameterize. For this reason simple checks (see below) cannot usefully contain calls to with-check-info to report additional information. All checks created using define-simple-check or define-check grab some information by default: the name of the checks and the values of the parameters. Additionally the macro forms of checks grab location information and the expressions passed as parameters.

syntax

(define-simple-check (name param ...) expr ...)

The define-simple-check macro constructs a check called name that takes the params and an optional message as arguments and evaluates the exprs. The check fails if the result of the exprs is #f. Otherwise the check succeeds. Note that simple checks cannot report extra information using with-check-info.

For example, the following code defines a check check-odd?

> (define-simple-check (check-odd? number)
    (odd? number))

We can use these checks in the usual way:

> (check-odd? 3)
> (check-odd? 2)

--------------------

FAILURE

name:       check-odd?

location:   (eval 36 0 36 1)

expression: (check-odd? 2)

params:     (2)

Check failure

--------------------

syntax

(define-binary-check (name pred actual expected))

(define-binary-check (name actual expected) expr ...)
The define-binary-check macro constructs a check that tests a binary predicate. It’s benefit over define-simple-check is in better reporting on check failure. The first form of the macro accepts a binary predicate and tests if the predicate holds for the given values. The second form tests if expr non-false.

Here’s the first form, where we use a predefined predicate to construct a binary check:

> (define-binary-check (check-char=? char=? actual expected))

In use:

> (check-char=? (read-char (open-input-string "a")) #\a)

If the expression is more complicated the second form should be used. For example, below we define a binary check that tests a number if within 0.01 of the expected value:

> (define-binary-check (check-in-tolerance actual expected)
    (< (abs (- actual expected)) 0.01))

syntax

(define-check (name param ...) expr ...)

The define-check macro acts in exactly the same way as define-simple-check, except the check only fails if the macro fail-check is called in the body of the check. This allows more flexible checks, and in particular more flexible reporting options.

syntax

(fail-check)

(fail-check message-expr)
The fail-check macro raises an exn:test:check with the contents of the check information stack. The optional message is used as the exception’s message.

3.3 Compound Testing Forms

3.3.1 Test Cases

As programs increase in complexity the unit of testing grows beyond a single check. For example, it may be the case that if one check fails it doesn’t make sense to run another. To solve this problem compound testing forms can be used to group expressions. If any expression in a group fails (by raising an exception) the remaining expressions will not be evaluated.

syntax

(test-begin expr ...)

A test-begin form groups the exprs into a single unit. If any expr fails the following ones are not evaluated.

For example, in the following code the world is not destroyed as the preceding check fails:

(test-begin
  (check-eq? 'a 'b)
  ; This line won't be run
  (destroy-the-world))

syntax

(test-case name body ...+)

Like a test-begin except a name is associated with the bodys. The name will be reported if the test fails.

Here’s the above example rewritten to use test-case so the test can be named.

(test-case
  "Example test"
  (check-eq? 'a 'b)
  ; This line won't be run
  (destroy-the-world))

procedure

(test-case? obj)  boolean?

  obj : any
True if obj is a test case, and false otherwise.

3.3.1.1 Shortcuts for Defining Test Cases

procedure

(test-check name operator v1 v2)  void?

  name : string?
  operator : (-> any/c any/c any/c)
  v1 : any/c
  v2 : any/c
(test-pred name pred v)  void?
  name : string?
  pred : (-> any/c any/c)
  v : any/c
(test-equal? name v1 v2)  (void?)
  name : string?
  v1 : any/c
  v2 : any/c
(test-eq? name v1 v2)  void?
  name : string?
  v1 : any/c
  v2 : any/c
(test-eqv? name v1 v2)  void?
  name : string?
  v1 : any/c
  v2 : any/c
(test-= name v1 v2 epsilon)  void?
  name : string?
  v1 : real?
  v2 : real?
  epsilon : real?
(test-true name v)  void?
  name : string?
  v : any/c
(test-false name v)  void?
  name : string?
  v : any/c
(test-not-false name v)  void?
  name : string?
  v : any/c
(test-exn name pred thunk)  void?
  name : string?
  pred : (or/c (-> any any/c) regexp?)
  thunk : (-> any)
(test-not-exn name thunk)  void?
  name : string?
  thunk : (-> any)
Creates a test case with the given name that performs the corresponding check. For example,

(test-equal? "Fruit test" "apple" "pear")

is equivalent to

(test-case "Fruit test" (check-equal? "apple" "pear"))

3.3.2 Test Suites

Test cases can themselves be grouped into test suites. A test suite can contain both test cases and test suites. Unlike a check or test case, a test suite is not immediately run. Instead use one of the functions described in User Interfaces or Programmatically Running Tests and Inspecting Results.

syntax

(test-suite name-expr maybe-before maybe-after test ...)

 
maybe-before = 
  | #:before before-thunk
     
maybe-after = 
  | #:after after-thunk
 
  name-expr : string?
Constructs a test suite with the given name and tests. The tests may be checks, test cases, constructed using test-begin or test-case, or other test suites.

The before-thunk and after-thunk are optional thunks (functions with no argument). They are run before and after the tests are run, respectively.

Unlike a check or test case, a test suite is not immediately run. Instead use one of the functions described in User Interfaces or Programmatically Running Tests and Inspecting Results.

For example, here is a test suite that displays Before before any tests are run, and After when the tests have finished.

(test-suite
  "An example suite"
  #:before (lambda () (display "Before"))
  #:after  (lambda () (display "After"))
  (test-case
    "An example test"
    (check-eq? 1 1))
  (test-suite "A nested test suite"
    (test-case "Another test"
      (check-< 1 2))))

procedure

(make-test-suite name    
  tests    
  [#:before before-thunk    
  #:after after-thunk])  test-suite?
  name : string?
  tests : (listof (or/c test-case? test-suite?))
  before-thunk : (-> any) = void
  after-thunk : (-> any) = void
Constructs a test suite with the given name containing the given tests. Unlike the test-suite form, the tests are represented as a list of test values.

procedure

(test-suite? obj)  boolean?

  obj : any
True if obj is a test suite, and false otherwise

3.3.2.1 Utilities for Defining Test Suites

There are some macros that simplify the common cases of defining test suites:

syntax

(define-test-suite name test ...)

The define-test-suite form creates a test suite with the given name (converted to a string) and tests, and binds it to the same name.

For example, this code creates a binding for the name example-suite as well as creating a test suite with the name "example-suite":

(define-test-suite example-suite
  (check = 1 1))

syntax

(define/provide-test-suite name test ...)

This form is just like define-test-suite, and in addition it provides the test suite.

3.4 Test Control Flow

The before, after, and around macros allow you to specify code that is always run before, after, or around expressions in a test case.

syntax

(before before-expr expr1 expr2 ...)

Whenever control enters the scope execute the before-expr before executing expr-1, and expr-2 ...

syntax

(after expr-1 expr-2 ... after-expr)

Whenever control exits the scope execute the after-expr after executing expr-1, and expr-2 ... The after-expr is executed even if control exits via an exception or other means.

syntax

(around before-expr expr-1 expr-2 ... after-expr)

Whenever control enters the scope execute the before-expr before executing expr-1 expr-2 ..., and execute after-expr whenever control leaves the scope.

Example:

The test below checks that the file test.dat contains the string "foo". The before action writes to this file. The after action deletes it.

(around
  (with-output-to-file "test.dat"
     (lambda ()
       (write "foo")))
  (with-input-from-file "test.dat"
    (lambda ()
      (check-equal? "foo" (read))))
  (delete-file "test.dat"))

syntax

(delay-test test1 test2 ...)

This somewhat curious macro evaluates the given tests in a context where current-test-case-around is parameterized to test-suite-test-case-around. This has been useful in testing RackUnit. It might be useful for you if you create test cases that create test cases.

3.5 Miscellaneous Utilities

The require/expose macro allows you to access bindings that a module does not provide. It is useful for testing the private functions of modules.

syntax

(require/expose module (id ...))

Requires id from module into the current module. It doesn’t matter if the source module provides the bindings or not; require/expose can still get at them.

Note that require/expose can be a bit fragile, especially when mixed with compiled code. Use at your own risk!

This example gets make-failure-test, which is defined in a RackUnit test:

(require/expose rackunit/private/check-test (make-failure-test))

procedure

(dynamic-require/expose mod name)  any

  mod : 
(or/c module-path?
      module-path-index?
      resolved-module-path?)
  name : symbol?
Like dynamic-require, but gets internal bindings like require/expose.

3.6 User Interfaces

RackUnit provides a textual and a graphical user interface

3.6.1 Textual User Interface

 (require rackunit/text-ui) package: rackunit-lib

The textual UI is in the rackunit/text-ui module. It is run via the run-tests function.

procedure

(run-tests test [verbosity])  natural-number/c

  test : (or/c test-case? test-suite?)
  verbosity : (symbols 'quiet 'normal 'verbose) = 'normal
The given test is run and the result of running it output to the current-output-port. The output is compatable with the (X)Emacs next-error command (as used, for example, by (X)Emacs’s compile function)

The optional verbosity is one of 'quiet, 'normal, or 'verbose. Quiet output displays only the number of successes, failures, and errors. Normal reporting suppresses some extraneous check information (such as the expression). Verbose reports all information.

run-tests returns the number of unsuccessful tests.

3.6.2 Graphical User Interface

 (require rackunit/gui) package: rackunit-gui

RackUnit also provides a GUI test runner, available from the rackunit/gui module.

procedure

(test/gui test ... [#:wait? wait?])  void?

  test : (or/c test-case? test-suite?)
  wait? : boolean? = #f
Creates a new RackUnit GUI window and runs each test. The GUI is updated as tests complete.

When wait? is true, test/gui does not return until the test runner window has been closed.

procedure

(make-gui-runner)  (-> (or/c test-case? test-suite?) ... any)

Creates a new RackUnit GUI window and returns a procedure that, when applied, runs the given tests and displays the results in the GUI.