
No Magic in CS1: How to Design Programs

Matthias Felleisen
Northeastern University

Robert Bruce Findler
University of Chicago

Matthew Flatt
University of Utah

Shriram Krishnamurthi
Brown University

1 Introduction

Many graduates of an introductory programming course

• cannot describe a process for going from a problem
statement to its solution in the form of a program;

• cannot reliably distinguish a correct solution program
from an incorrect one;

• and cannot even explain how a correct program ar-
rives at its result for a given input.

The reason is that many such courses still convey a view
of programming as tinkering and of computers as magi-
cal machines. In particular, courses hardly ever present
an explicit model of programming, but rely on implicit
learning via a series of examples.

Over the past few years, we have developed an alterna-
tive approach [1]. It builds on an understanding of arith-
metic and pre-algebra that students have developed in
elementary through high school. Based on this under-
standing, we teach a simple but rigorous model of com-
putation. We then introduce a systematic process for
developing programs. The process is based on reasoning
about classes of data and is thus an ideal introduction
to class-oriented programming.

Sections 2, 3, and 4 describe our models of computation
and programming. Section 5 is a brief experience report.

2 Computation

Students are taught to compute from their earliest class-
room days. In elementary school, students learn com-
putational rules such as

2 + 3 → 5
4 ∗ 7 → 28

They also learn how to perform computations that in-
volve sub-calculations, such as

2 + (3 ∗ 7) → 2 + 21 → 23

After several years of learning arithmetic, a student’s
computational skills grow radically in pre-algebra. Stu-
dents learn to combine a function definition, such as

f (x) = x + 1

with a use of the function, such as

f (2) → 2 + 1 → 3

They find the definition of f , discover that its argument
is named x and that its right-hand side is x + 1, and
then substitute 2 for x in x + 1 to replace the function
invocation. Even with functions, the principle of sub-
computation continues to apply:

f (f (2)) → f (2 + 1) → f (3) → 3 + 1 → 4

Since a pre-algebra graduate has written pages of such
computations (under instructions to “show all work”),
there is no magic in how f (f (2)) evaluates to 4.

2.1 Adjusting Notation

Traditional algebra exploits dozens of informal nota-
tional conventions. These make it easy for (experienced)
people to communicate in its notation. But, it also
makes it difficult for programming language software
to communicate with people. We therefore pick a more
regular notation, both to simplify the interface with the
programming environment, and to reinforce the notion
that programming is a predictable exercise—right down
to the error messages.

We choose a syntax based on Lisp and Scheme:

• Operators appear before their operands.

1 + 2 =⇒ (+ 1 2)

• Every use of an operator is immediately preceded by
“(”. The last argument is followed by “)”. Parenthe-
ses are not optional, and extra parentheses are not
allowed.

1 + 2 ∗ 4 =⇒ (+ 1 (∗ 2 4))

• Function calls obey the same syntax as uses of built-
in operators. The function name is preceded by a left
parenthesis, and the last argument is followed by a
right parenthesis.

f (f (2)) =⇒ (f (f 2))

• The = in a function definition becomes define and
moves to the beginning of the definition. The left-
hand side mimics the function-call syntax. The entire
definition is wrapped in parentheses.

f (x) = x + 1 =⇒ (define (f x) (+ x 1))

In our experience, this simple translation helps most
students overcome any reservations they may have
about our notation.

Note: A vital aspect of our programming environment
is that it recognizes precisely the language that we de-
fine for teaching purposes, no more; further, this lan-
guage grows as the term progresses. Students therefore
never encounter error messages that use terminology
they have not seen before, thereby avoiding the notion
that the computer is an unfathomable magic box.

2.2 Rich Algebra of Data

To support typical programming tasks with our com-
putational model, we enrich the set of data and com-
putations. For example, we add booleans—true and
false—and operators like < and =. We provide rules
of evaluation, which often build on arithmetic relations
that the students know already.

(< 1 2) → true
(= 1 2) → false
. . .

We do not restrict ourselves to values described with
letters and numbers. We also provide graphical values,
with intuitive evaluation rules.

(empty-image 4 4) →
(draw-point 2 2) → q
(draw-point q 2 3) → qq
. . .

In this way, we can reinforce our model with examples
that are more compelling than mere arithmetic.

(draw-point (empty-image 4 4) 2 (+ 1 1))

→ (draw-point 2 (+ 1 1))

→ (draw-point 2 2)

→ q
Another way to enrich the algebra is to use conditionals.
The conditional form we use is cond, whose syntax is

(cond
(question-expr answer-expr)
. . .
(question-expr answer-expr))

It corresponds to the traditional algebraic notation answer-expr if question-expr
...
answer-expr if question-expr

Two evaluation rules describe cond computations. The
first rule is that when the initial question is true, the
cond expression evaluates to the corresponding answer.

(cond (true 17) ((< 5 13) 9)) → 17

The second rule is that when the initial question is false,
the question and its answer are discarded.

(cond (false 17) ((< 5 13) 9)) → (cond ((< 5 13) 9))

If the question expression of the first clause of cond is
not true or false, then a sub-computation must be ap-
plied to reduce the question expression, just like com-
puting the arguments for a primitive operation.

(cond ((< 5 13) 9)) → (cond (true 9)) → 9

No evaluation rule exists for (cond), which implies that
if all questions produce false, an error is reported.

3 Design

Our ultimate goal is to have students implement their
own programs, not just evaluate our programs. To this
end, we teach a class-based approach to designing pro-
grams. Students first learn that they must represent in-
formation from the real world as data in their program-
ming language. This very first decision, and writing
down the decision in the form of a data class definition,
drives the rest of the program design.

The key element of our process is the notion of a design
recipe. It consists of six steps, with well-defined out-
comes, and guides the student through the implemen-
tation process. When a student is stuck, a teacher can
ask for the intermediate outcomes. For each intermedi-
ate outcome, we provide suggestive questions that help
students overcome a roadblock. In turn, the output of
the steps forms a portfolio of the student’s work on the
problem, resulting to a much richer grading rubric than
examining the final program alone. In the remainder of
this section, we illustrate the essential elements of the
design recipe through a series of examples.

3.1 Design Recipe

Figure 1 shows the general structure of the design
recipe. We refine these steps (via question and answer
games) for the variety of data definitions that program-
mers typically encounter. If the program uses a built-in
class of data, say nums, the design process begins with
the specification of a function’s contract. The contract
defines the kind of data that are given to a function,
and the kind of data that it returns.

1. Analyze and describe the classes of problem data.
2. Formulate a contract and purpose statement.
3. Illustrate the purpose statement with examples.
4. Create a function layout based on this information.
5. Write the body of the function.
6. Turn the examples into (automatic) test cases.

Figure 1: The Design Recipe, General Structure

For example, suppose the problem is to write a feed-it
function, which consumes (a representation of) a zoo an-
imal and returns the animal after reeding it five pounds
of food. If we only care about the weight of the animal,
a number is a suitable representation.

Since feed-it consumes and produces a number, its con-
tract and purpose are1

;; feed-it : num → num
;; to feed an animal 5 pounds of food

After the student has written these, the next step is
to make up examples. Together with the contract, this
step helps ensure that a student understands the task at
hand. Each example shows a call of the function with a
particular argument, and also shows the expected result.

(feed-it 20) = 25
(feed-it 40) = 45

For atomic forms of data, such as num, the design recipe
offers little more advice, except that the definition must
have the form

(define (feed-it a) . . . a . . .)

The recipe suggests the a in the body of the function
to remind the student that this information is available
for implementing the function body. The student must
then arrive at the definition

(define (feed-it a) (+ a 5))

This step is the creative part of programming, and no
design recipe can automate it.

Given a complete function, the recipe requires one addi-
tion step: executing the examples to test the function.
Well chosen examples also serve as effective tests.

3.2 Design with Structure Types

Most likely, we will want to track more about our zoo
animals than just the animal’s weight. Suppose that
our zoo contains zebras, and we want to keep track of
each zebra’s weight and stripes. Although each of those
quantities can be represented as a number, a complete
zebra representation must combine the numbers.

To define new kinds of compound data, we introduce one
last piece of syntax. The define-struct form declares

1We write the contract and purpose in comments, indi-
cated by the semicolon at the beginning of the line.

a structure type, given a name for the structure and a
name for each field. For example, we declare a zebra
structure with

(define-struct zebra (weight stripes))

This declaration introduces a value constructor called
make-zebra that combines two values. Thus, (make-
zebra 250 10) is a value, representing a 250-pound zebra
with 10 stripes. This value has the same status as the
number 7 or the boolean false, which means that it does
not evaluate to anything else. Fields in a construction
expression that are not yet values get evaluated to yield
values. Thus,

(make-zebra (+ 250 5) 10) → (make-zebra 255 10)

and (make-zebra 255 10) is the result.

In addition to make-zebra, the declaration above also
defines zebra-weight, zebra-stripes, and zebra?, and it es-
tablishes the following evaluation rules.

(zebra-weight (make-zebra X Y)) → X
(zebra-stripes (make-zebra X Y)) → Y
(zebra? (make-zebra X Y)) → true
(zebra? anything-else) → false

So, (zebra-stripes (make-zebra 250 10)) evaluates to 10.

Nothing about the zebra declaration requires the slots of
a make-zebra construction to contain numbers, though
that was our intent. To make this intent clear, we write
down a data definition.

;; A zebra is (make-zebra num num)

That is, when zebra appears in a contract, it refers to a
value constructed with make-zebra where the slots con-
tain numbers. We use zebra to write a contract for
feed-zebra:

;; feed-zebra : zebra → zebra
;; to feed a zebra 5 pounds of food

The data definition for zebra then guides the construc-
tion of examples for feed-zebra. We start with

(feed-zebra

and then consult the contract for feed-zebra, where we
see zebra to the left of the arrow. Now we consult the
data definition for zebra, which says that every zebra
starts with (make-zebra. Hence, we get

(feed-zebra (make-zebra

The data definition further says that two numbers ap-
pear after make-zebra. So, we pick two numbers:

(feed-zebra (make-zebra 250 10))

Now we write the expected answer for this particular
call. Given a (representation of a) 250-pound zebra with
10 stripes, we expect to get back a (representation of a)
255-pound zebra with 10 stripes.

(feed-zebra (make-zebra 250 10)) = (make-zebra 255 10)

After making examples, we are ready to implement the
function. In the case of compound data, the design

recipe offers additional guidance. It directs us to create
a template for the implementation:

(define (feed-zebra z)
. . . (zebra-weight z) . . . (zebra-stripes z) . . .)

The presence of (zebra-weight z) and (zebra-stripes z) in
the template body is driven by the contract and data
definition. The contract says that z is a zebra, and
the data definition says that we can extract two parts
from a zebra. To complete the function, we can take
the suggestions of the template and combine them to
complete the function:

(define (feed-zebra z)
(make-zebra (+ 5 (zebra-weight z))

(zebra-stripes z)))

The template is a crucial step in the design recipe, even
for functions on simple kinds of compound data. The
template reminds a student which pieces of data are
readily available for constructing an answer.

3.3 Design with Multiple Structures

To make our zoo more interesting, we could add
snakes, keeping track of each snake’s weight, length,
and whether it is poisonous. Clearly, we need a new
structure and data definition.

(define-struct snake (weight length poisonous))
;; A snake is (make-snake num num bool)

Given this data definition, we could write feed-snake.
Eventually, we want a single function that feeds an ar-
bitrary animal. The next step, then, is to define animal .

;; An animal is either
;; a zebra, or
;; a snake

This data definition differs from the previous definitions
in that it has no associated structure, but also in that
it contains a choice. Suppose we want to define a feed-
animal function, with the contract

;; feed-animal : animal → animal
;; to feed an animal 5 pounds of food

When making examples for this function, we have a
choice for arguments. Indeed, the design recipe pre-
scribes at least one example for each choice for a data
definition like animal . So our examples might include

(feed-animal (make-zebra 250 10))
= (make-zebra 255 10)

(feed-animal (make-snake 10 12 false))
= (make-snake 15 12 false)

The design recipe dictates a template where the func-
tion body is a cond expression. The cond expression
must have two cases, because the data definition has
two choices. The question for the first case is (zebra?
a) because the first case in the data definition is zebra,
and the question for the second case is (snake? a). Fi-
nally, the design recipe instructs us to select or write a
function to process the data of each case. In the first

case for feed-animal , we can process a zebra with feed-
zebra, and in the second case, we can process a snake
with feed-snake. The complete template is

(define (feed-animal a)
(cond
((zebra? a) . . . (feed-zebra a). . .)
((snake? a) . . . (feed-snake a). . .)))

Given feed-zebra and feed-snake, the template actually
provides the complete implementation.

The shape of the template matches the shape of the
data definition. The data definition has two cases, so
the template contains a cond with two cases. The data
definition refers to two other data definitions, so the
template refers to two other functions. This correlation
between the data definition and the implementation is
the heart of the design recipe. It is also the reason
our approach transitions well to courses that use object-
oriented languages.

4 Recursion without Magic

At this point, we know how to represent a single ani-
mal. We could also define a structure to represent a zoo
of size 5 or 25, but to represent a realistic zoo, which
has no fixed size, we need a better representation. The
representation does not require new syntax, however. It
requires only a data definition of the following shape:

�)(define-struct bigger (first rest))
;; A zoo is either
;; empty, or
;; (make-bigger animal zoo)

where empty is a constant, like true or false, representing
an empty zoo. Meanwhile, (make-bigger an-animal a-
zoo) represents a zoo just like a-zoo, except that is also
has an-animal . Here are three example zoos:

empty
(make-bigger (make-zebra 250 10) empty)
(make-bigger (make-snake 10 12 false)

(make-bigger (make-zebra 250 10) empty))

Suppose we need to write the feed-zoo function, which
feeds every animal in a zoo. The contract is

;; feed-zoo : zoo → zoo
;; feed all animals in the given zoo

To make examples, we can use the example zoos above.
(feed-zoo empty) = empty
(feed-zoo (make-bigger (make-snake 10 12 false)

(make-bigger (make-zebra 250 10) empty)))
= (make-bigger (make-snake 15 12 false)

(make-bigger (make-zebra 255 10) empty))

To implement the function, we start with a template.
The template contains a cond with two cases. In the
second case, we need a function that processes animals
and one that processes zoos. Well, we are developing a
function that consumes zoos and we might as well use
it. After all, the data definition refers to itself, so the
template should refer to itself, too.

�)
(define (feed-zoo z)
(cond
((empty? z) . . .)
((bigger? z) . . . (feed-animal (bigger-first z))

. . . (feed-zoo (bigger-rest z)) . . .)))

We complete the function case-by-case. In the first case,
our example tells us the right answer. In the second
case, the template gives us an expression that feeds the
first animal, and an expression that feeds the rest of the
animals. All we have to do is combine the fed animals
into a bigger zoo.
(define (feed-zoo z)
(cond

((empty? z) empty)

((bigger? z) (make-bigger (feed-animal (bigger-first z))

(feed-zoo (bigger-rest z))))))

All of the code outside the boxes comes from the tem-
plate, and writing the template is essentially mechan-
ical. Templates reduce mistakes in the uninteresting
portions of the program and help the programmer fo-
cus on the parts that require an understanding of the
specific problem.

Using our well-defined evaluation rules, we can even val-
idate by hand that the function works on our example.
Showing all steps takes more space than we have avail-
able, but we show the major steps.2

(feed-zoo (make-bigger (make-zebra 250 10) empty))
→ ...→ (make-bigger (feed-animal (make-zebra 250 10))

(feed-zoo empty))
→ ...→ (make-bigger (make-zebra 255 10)

(feed-zoo empty))
→ ...→ (make-bigger (make-zebra 255 10)

empty)

5 Experience

The course described in this paper is the result of a
decade of development, including an array of course-
ware such as a programming environment, on-line exer-
cises and solutions, and training workshops. We have
successfully field-tested our approach in a wide variety
of contexts over many years. We exported the course to
colleagues at our own institution, then at other public
and private colleges, and finally to high schools across
the nation. Educators at all levels who have imple-
mented the approach have responded enthusiastically;
they have also provided significant feedback that we
have incorporated.

Although our approach does not use the syntax of a cur-
rently fashionable programming language, it prepares
students to succeed in a wide variety of contexts. In the
several universities where this course is now the main in-
troductory course, the follow-on data structures course

2Our programming environment provides a tool to
browse through every step of the evaluation.

is taught in Java. Students who have completed our
course perform well in the Java course, and they tend
to outperform students who enter the second-semester
course after going through a mainstream CS1 course
based on C++ or Java. At the high school level, many
teachers use the course as preparation for the AP test,
which means they teach C++ (the current AP lan-
guage) for only the second half of the AP class. Despite
this shift in languages, teachers report that students
have better programming skills than before, and that
the students achieve high scores on the AP test.

6 Conclusion

We have just presented the essential elements of our
novel approach to the first course on programming. The
course provides an explicit model of computation and
programming and thus actively discourages the idea of
computing and programming as black magic. The key
innovation is the notion of a design recipe, which not
only provides a bridge from problem statement to solu-
tion, but, with its emphasis on documentation, data-
induced code structure, and testing, also encourages
good software engineering habits from the first day.

Our approach extends well beyond the processing of
structures and linked lists. Tree processing is a simple
generalization, as is processing instances of mutually re-
cursive data definitions (e.g., directories and files in a
filesystem), or graphs. Furthemore, our course builds
on the design recipe to include coverage of higher-order
functions, parametric and object polymorphism, state
encapsulation, and state change.

References

[1] Felleisen, M., Findler, R. B., Flatt, M., and
Krishnamurthi, S. How to Design Programs.
The MIT Press, Cambridge, Massachusetts, 2001.
http://www.htdp.org/.

