
Meta-Programming through
Typeful Code Representation ∗

Chiyan Chen and Hongwei Xi

Computer Science Department
Boston University

{chiyan, hwxi}@cs.bu.edu

Abstract

By allowing the programmer to write code that can generate code
at run-time, meta-programming offers a powerful approach to pro-
gram construction. For instance, meta-programming can often be
employed to enhance program efficiency and facilitate the construc-
tion of generic programs. However, meta-programming, especially
in an untyped setting, is notoriously error-prone. In this paper, we
aim at making meta-programming less error-prone by providing a
type system to facilitate the construction of correct meta-programs.
We first introduce some code constructors for constructing typeful
code representation in which program variables are replaced with
deBruijn indices, and then formally demonstrate how such type-
ful code representation can be used to support meta-programming.
The main contribution of the paper lies in recognition and then for-
malization of a novel approach to typed meta-programming that is
practical, general and flexible.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications—
Applicative Languages

General Terms

Languages, Theory

Keywords

Meta-Programming, Multi-Level Staged Programming, Typeful
Code Representation

∗∗Partially supported by NSF grants no. CCR-0224244 and no.
CCR-0229480

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’03, August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

1 Introduction

Situations often arise in practice where there is a need for writ-
ing programs that can generate programs at run-time. For in-
stance, there are numerous cases (kernel implementation [18],
graphics [26], interactive media [10], method dispatch in object-
oriented languages [9, 2], etc.) where run-time code generation can
be employed to reap significant gain in run-time performance [17].
To illustrate this point, we define a functionevalPolyas follows in
Scheme for evaluating a polynomialp at a given pointx.

(define (evalPoly p x)
(if (null? p)

0
(+ (car p) (* x (evalPoly (cdr p) x)))))

Note that we use a nonempty list(a0 a1 . . . an) in Scheme to repre-
sent the polynomialanxn+ . . .+a1x+a0. We now define a function
sumPolysuch that(sumPoly p xs) returns the sum of the values of
a polynomialp at the points listed inxs.

(define (sumPoly p xs)
(if (null? xs)

0
(+ (evalPoly p (car xs))

(sumPoly p (cdr xs)))))

When callingsumPoly, we generally need to evaluate afixedpoly-
nomial repeatedlyat different points. This suggests that we imple-
mentsumPolywith the following strategy so as to makesumPoly
more efficient.

We first define a functiongenEvalPolyas follows, where we make
use of the backquote/comma notation in Scheme.

(define (genEvalPoly p)
(define (aux p x)
(if (null? p)

0
‘(+ ,(car p)

(* ,x ,(aux (cdr p) x)))))
‘(lambda (x) ,(aux p ‘x)))

When applied to a polynomialp, genEvalPoly returns an s-
expression that represents a procedure (in Scheme) for evaluating
p. For instance,(genEvalPoly ′(3 2 1)) returns the following s-
expression,

(lambda (x) (+ 3 (∗ x (+ 2 (∗ x (+ 1 (∗ x 0)))))))

which represents a procedure for evaluating the polynomial
x2 + 2x + 3. Therefore, given a polynomialp, we can call
(eval (genEvalPoly p) ′()) to generate a procedureproc for

evaluatingp1; presumably,(proc x) should execute faster than
(evalPoly p x) does. This leads to the following (potentially) more
efficient implementation ofsumPoly.

(define (sumPoly p xs)
(define proc (eval (genEvalPoly p) ’()))
(define (aux xs)

(if (null? xs)
0
(+ (proc (car xs)) (aux xs))))

(aux xs))

Meta-programming, though useful, is notoriously error-prone in
general and approaches such as hygenic macros [11] have been pro-
posed to address the issue. Programs generated at run-time often
contain type errors or fail to be closed, and errors in meta-programs
are generally more difficult to locate and fix than those in (ordi-
nary) programs. This naturally leads to a need for typed meta-
programming so that types can be employed to capture errors in
meta-programs at compile-time.

The first and foremost issue in typed meta-programming is the need
for properly representing typed code. Intuitively, we need a type
constructor(·)codesuch that for a given typeτ, (τ)codeis the type
for expressions representing code of typeτ. Also, we need a func-
tion run such that for a given expressione of type (τ)code, run(e)
executes the code represented bye and then returns a value of type
τ when the execution terminates. Note that we cannot in general
execute open code, that is, code containing free program variables.
Therefore, for each typeτ, the type(τ)codeshould only be for ex-
pressions representing closed code of typeτ.

A common approach to capturing the notion of closed code is
through higher-order abstract syntax (h.o.a.s.) [3, 24, 23]. For
instance, the following declaration in Standard ML (SML) [19]
declares a datatype for representing pure untyped closedλ-
expressions:

datatype exp =
Lam of (exp -> exp) | App of exp * exp

As an example, the representation of the untypedλ-expression
λx.λy.y(x) is given below:

Lam(fn (x:exp) => Lam (fn (y:exp) => App(y, x))

Although it seems difficult, if not impossible, to declare a datatype
in ML for precisely representing typedλ-expressions, this can be
readily done if we extend ML with guarded recursive (g.r.) datatype
constructors [35]. For instance, we can declare a g.r. datatype
constructor(·)HOASand associate with it two value constructors
HOASlamandHOASappthat are assigned the following types, re-
spectively.2

∀α∀β.((α)HOAS→ (β)HOAS)→ (α→ β)HOAS
∀α∀β.(α→ β)HOAS∗ (α)HOAS→ (β)HOAS)

Intuitively, for a given typeτ, (τ)HOASis the type for h.o.a.s. trees
that represent closed code of typeτ. As an example, the h.o.a.s.
representation of the simply typedλ-expressionλx : int.λy : int→
int.y(x) is given below,

HOASlam(fn x:int HOAS =>
HOASlam(fn y:(int -> int) HOAS => HOASapp(y, x)))

which has the type(int→ (int→ int)→ int)HOAS.

1Note thateval is a built-in function in Scheme that takes an
s-expression and an environment as its arguments and returns the
value of the expression represented by the s-expression.

2Note that, unlike a similar inductively defined type construc-
tor [25], HOAScannot be inductively defined.

By associating withHOASsome extra value constructors, we can
represent closed code of typeτ as expressions of type(τ)HOAS.
In other words, we can define(·)codeas (·)HOAS. The function
run can then be implemented by first translating h.o.a.s. trees into
(untyped) first-order abstract syntax (f.o.a.s.) trees3 and then com-
piling the f.o.a.s. trees in a standard manner. Please see a recent
paper [35] for more details on such an implementation.

Though clean and elegant, there are some serious problems with
representing code as h.o.a.s trees. In general, it seems rather dif-
ficult, if not impossible, to manipulate open code in a satisfactory
manner when higher-order code representation is chosen. On the
other hand, there is often a need to directly handle open code when
meta-programs are constructed. For instance, in the definition of
the functiongenEvalPoly, the auxiliary functionaux returns some
open code containing one free program variable (which is closed
later). We feel it may make meta-programming too restrictive if
open code manipulation is completely disallowed.

Furthermore, higher-order code representation may lead to a subtle
problem. Suppose we need to convert the following h.o.a.s. treet,
which has the type((int)HOAS→ int)HOAS, into some f.o.a.s. tree
in order to run the code represented byt:

HOASlam (fn (x: (int HOAS) HOAS) => run x)

We then need to apply the functionrun to a variable ranging over
expressions of type((int)HOAS)HOASwhen making this conver-
sion, which unfortunately causes a run-time error. This is precisely
the problem offree variable evaluation, a.k.a.open code extrusion,
which we encounter when trying to evaluate the code:

<fn x:<int> => ˜(run <x>)>

in MetaML [33].

In this paper, we choose a form of first-order abstract syntax trees to
represent code that not only support direct open code manipulation
but also avoid the problem of free variable evaluation. As for the
free program variables in open code, we use deBruijn indices [8] to
represent them. For instance, we can declare the following datatype
in Standard ML to represent pure untypedλ-expressions.

datatype exp =
One | Shi of exp | Lam of exp | App of exp * exp

We useOnefor the first free variable in aλ-expression andShi for
shifting each free variable in aλ-expression by one index. As an
example, the expressionλx.λy.y(x) can be represented as follows:

Lam(Lam(App(One,Shi(One))))

For representing typed expressions, we refineexpinto types of the
form 〈G,τ〉, where〈·, ·〉 is a binary type constructor andG stands for
type environments, which are represented as sequences of types; an
expression of type〈G,τ〉 represents some code of typeτ in which
the free variables are assigned types byG, and therefore the type
for closed code of typeτ is simply〈ε,τ〉, whereε is the empty type
environment.

It is certainly cumbersome, if not completely impractical, to pro-
gram with f.o.a.s. trees, and the direct use of deBruijn indices fur-
ther worsens the situation. To address this issue, we adopt some
meta-programming syntax from Scheme and MetaML to facilitate
the construction of meta-programs and then provide a translation to
eliminate the meta-programming syntax. We also provide interest-
ing examples in support of this design.

3For this purpose, we may need to introduce a constructor
HOASvarof the type∀α.string→ (α)HOASfor representing free
variables.

kinds κ ::= type| env
types τ ::= α | τ1→ τ2 | 〈G,τ〉 | ∀αγ : κ.τ
type env. G ::= γ | ε | τ :: G
constants c ::= cc | cf
const. fun. cf ::= run
const. con. cc ::= Lift |One| Shi| App| Lam| Fix
expressions e ::= x | f | c(e1, . . . ,en) |

lam x.e | e1(e2) | fix f .e |
Λi(v) | Λe(e)

values v ::= x | cc(v1, . . . ,vn) | lam x.e | Λi(v)
exp. var. ctx. Γ ::= /0 | Γ,x : τ
typ. var. ctx. ∆ ::= /0 | ∆,α : type| ∆,γ : env

Figure 1. The syntax forλcode

The main contribution of the paper lies in recognition and then for-
malization of a novel approach to typed meta-programming that
is practical, general and flexible. This approach makes use of a
first-order typeful code representation that not only supports direct
open code manipulation but also prevents free variable evaluation.
Furthermore, we facilitate meta-programming by providing certain
meta-programming syntax as well as a type system to directly sup-
port it. The formalization of the type system, which is considerably
involved, constitutes the major technical contribution of the paper.

We organize the rest of the paper as follows. In Section 2, we in-
troduce an internal languageλcodeand use it as the basis for typed
meta-programming. We then extendλcode to λ+

code in Section 3,
including some syntax to facilitate meta-programming. In Sec-
tion 4, we briefly mention an external language which is designed
for the programmer to construct programs that can eventually be
transformed into those inλ+

code. We also present some examples in
support of the practicality of meta-programming withλ+

code. In Sec-
tion 5, we introduce additional code constructors to support more
programming features such as references. Lastly, we mention some
related work and then conclude.

2 The Languageλcode

In this section, we introduce a languageλcode, which essentially ex-
tends the second-order polymorphicλ-calculus with general recur-
sion (through a fixed point operatorfix), certain code constructors
for constructing typeful code representation and a special function
run for executing closed code. The syntax ofλcode is given in Fig-
ure 1. We provide some explanation on the syntax as follows.

• We use the kindstype and env for types and type environ-
ments, respectively. In addition, we useα andγ for the vari-
ables ranging over types and type environments, respectively,
andαγ for either anα or aγ.

• We useτ for types andG for type environments. A type en-
vironment assigns types to free expression variables in code.
For instance,bool :: int :: ε is a type environment which as-
signs the typesboolandint to the first and the second expres-
sion variables, respectively. We useτG for either aτ or aG.

• We use〈G,τ〉 as the type for expressions representing code
of type τ in which each free variable is assigned a type
by the type environmentG. For instance, the expression
App(One,Shi(One)) can be assigned the type〈(int→ int) ::
int :: ε, int〉 to indicate that the expression represents some
code of typeint in which there are at most two free variables
such that the first and the second free variables have the types
int andint→ int, respectively.

• The (code) constructorsLift,One,Shi,Lam,App and Fix are

Lift : ∀γ.∀α.(α)⇒ 〈γ,α〉
Lam : ∀γ.∀α1.∀α2.(〈α1 :: γ,α2〉)⇒ 〈γ,α1→ α2〉
App : ∀γ.∀α1.∀α2.(〈γ,α1→ α2〉,〈γ,α1〉)⇒ 〈γ,α2〉
Fix : ∀γ.∀α.(〈α :: γ,α〉)⇒ 〈γ,α〉

One : ∀γ.∀α.()⇒ 〈α :: γ,α〉
Shi : ∀γ.∀α1.∀α2.(〈γ,α1〉)⇒ 〈α2 :: γ,α1〉
run : ∀α.(〈ε,α〉)⇒ α

Figure 2. The types of some constructors inλcode

used for constructing expressions representing typed code in
which variables are replaced with deBruijn indices [8], and the
functionrun is for executing typed closed code represented by
expressions.

• We differentiatelam-bound variablesx from fix-bound vari-
ablesf ; a lam-bound variable is a value but afix-bound vari-
able is not. This differentiation mainly prepares for introduc-
ing effects into the system.

• We use Λi(·) and Λe(·) to indicate type abstraction and
application, respectively. For instance, the expression
(Λα.λx : α.x)[int] in the Church style is represented as
Λe(Λi(lam x.x)). Later, the presence ofΛi andΛe allows us
to uniquely determine the rule that is applied last in the typing
derivation of a given expression. Preparing for accommodat-
ing effects inλcode, we impose the usual value restriction [34]
by requiring thatΛi be only applied to values.

It is straightforward to extendλcodewith some base types (e.g.,bool
and int for booleans and integers, respectively) and constants and
functions related to these base types. Also, conditional expressions
can be readily added intoλcode. Later, we may form examples in-
volving these extra features so as to give a more interesting presen-
tation.

We assume a variable can be declared at most once in an expression
(type) variable contextΓ (∆). For an expression variable contextΓ,
we writedom(Γ) for the set of variables declared inΓ andΓ(xf) = τ
if xf : τ is declared inΓ. Note that similar notation also applies to
type variable contexts∆.

We use a signatureΣ to assign each constantc a c-type of the fol-
lowing form,

∀αγ1 : κ1 . . .∀αγm : κm.(τ1, . . . ,τn)⇒ τ

wheren indicates the arity ofc. We writec(e1, . . . ,en) for applying
a constantc of arity n to n argumentse1, . . . ,en. For constantsc of
arity 0, we may writec for c().

For convenience, we may write∀∆ for a list of quantifiers∀αγ1 :
κ1 . . .∀αγm : κm, where

∆ = /0,αγ1 : κ1, . . . ,αγm : κm

Also, we may write∀α and∀γ for ∀α : typeand∀γ : env, respec-
tively. In Figure 2, we list the c-types assigned to the code con-
structors and the functionrun. Note that a c-type isnot regarded as
a type.

2.1 Static and Dynamic Semantics

We present the kinding rules forλcode in Figure 3. We use a judg-
ment of the form∆ ` τ : type(∆ ` G : env) to mean thatτ (G) is a
well-formed type (type environment) under∆. We useΘ for finite
mappings defined below anddom(Θ) for the domain ofΘ.

Θ ::= [] |Θ[αγ 7→ τG]

Kinding rules ∆ ` τG : κ

∆(αγ) = κ
∆ ` αγ : κ

∆ ` τ1 : type ∆ ` τ2 : type

∆ ` τ1→ τ2 : type

∆ `G : env ∆ ` τ : type

∆ ` 〈G,τ〉 : type

∆,αγ : κ ` τG : type

∆ ` ∀αγ : κ.τG : type

∆ ` ε : env

∆ ` τ : type ∆ `G : env

∆ ` τ :: G : env

Figure 3. The kinding rules for λcode

Note that[] stands for the empty mapping andΘ[αγ 7→ τG] stands
for the mapping that extendsΘ with a link formαγ to τG, where we
assumeαγ 6∈ dom(Θ). We writeτG[Θ] for the result of substituting
eachαγ ∈ dom(Θ) with Θ(αγ) in τG. The standard definition of
substitution is omitted here. We write∆ ` Θ : ∆0 to mean that for
eachαγ ∈ dom(Θ) = dom(∆0), ∆ `Θ(αγ) : ∆0(αγ).

Given a type variable context∆ and an expression variable context
Γ, we write ∆ ` Γ [ok] to mean that∆ ` Γ(x) : type is derivable
for everyx ∈ dom(Γ). We use∆;Γ ` e : τ for a typing judgment
meaning that the expressionecan be assigned the typeτ under∆;Γ,
where we require∆ ` Γ [ok].

The typing rules forλcode are listed in Figure 4. In the rule
(ty-iLam) , which introducesΛi , the premise∆ ` Γ [ok] ensures that
there are no free occurrences ofαγ in Γ.

PROPOSITION 2.1. (Canonical Forms) Assume that/0; /0 ` v : τ is
derivable. Then we have the following.

• If τ = τ1→ τ2, then v is of the formlam x.e.

• If τ = 〈G,τ1〉, then v is of one of the following forms: Lift(v1),
One, Shi(v1), Lam(v1), App(v1,v2) and Fix(v1).

• If τ = ∀αγ.κ, then v is of the formΛi(v1).

PROOF. The proposition follows from a straightforward inspection
of the typing rules in Figure 4.

We useθ for finite mappings defined below:

θ ::= [] | θ[xf 7→ e]

and writee[θ] for the result of substituting eachxf ∈ dom(θ) for
θ(xf) in e. We write

∆;Γ ` (Θ;θ) : (∆0;Γ0)

to mean∆ ` Θ : ∆0 and for eachxf ∈ dom(θ) = dom(Γ0), ∆;Γ `
θ(xf) : Γ0(xf)[Θ].

We assign dynamic semantics toλcodethrough the use of evaluation

Typing rules ∆;Γ ` e : τ

∆ ` Γ [ok] Γ(xf) = τ
∆;Γ ` xf : τ

(ty-var)

Σ(c) = ∀∆0.(τ1, . . . ,τn)⇒ τ ∆ ` Γ [ok]
∆ `Θ : ∆0 ∆;Γ ` ei : τi [Θ] for i = 1, . . . ,n

∆;Γ ` c(e1, . . . ,en) : τ[Θ]
(ty-cst)

∆;Γ,x : τ1 ` e : τ2

∆;Γ ` lam x.e : τ1→ τ2
(ty-lam)

∆;Γ ` e1 : τ1→ τ2 ∆;Γ ` e2 : τ1

∆;Γ ` e1(e2) : τ2
(ty-app)

∆;Γ, f : τ ` e : τ
∆;Γ ` fix f .e : τ

(ty-fix)

∆,αγ : κ;Γ ` v : τ ∆ ` Γ [ok]

∆;Γ ` Λi(v) : ∀αγ : κ.τ
(ty-iLam)

∆;Γ ` e : ∀αγ : κ.τ ∆ ` τG : κ
∆;Γ ` Λe(e) : τ[αγ 7→ τG]

(ty-eLam)

Figure 4. The typing rules for λcode

contexts, which are defined as follows.

eval. ctx. E ::= [] | c(v1, . . . ,vi−1,E,ei+1, . . . ,en) |
E(e) | v(E) | Λe(E)

Given an evaluation contextE and an expressione, we useE[e] for
the expression obtained from replacing the hole[] in E with e.

We define a functioncompas follows, where we usexfs for a se-
quence of distinct expression variablesxf . Note thatcompis a func-
tion at meta-level.

comp(xfs;Lift(v)) = v
comp(xfs,xf ;One) = xf

comp(xfs,xf ;Shi(v)) = comp(xfs;v)
comp(xfs;Lam(v)) = lam x.comp(xfs,x;v)

comp(xfs;App(v1,v2)) = (comp(xfs;v1))(comp(xfs;v2))
comp(xfs;Fix(v)) = fix f .comp(xfs, f ;v)

Intuitively, when applied to a sequence of distinct expression vari-
ablesxfs and a valuev representing some code,compreturns the
code. For instance, we have

comp(·,x, f ;App(One,Shi(One))) = f (x).

DEFINITION 2.2. We define redexes and their reductions as fol-
lows.

• (lam x.e)(v) is a redex, and its reduction is e[x 7→ v].

• fix f .e is a redex, and its reduction is e[f 7→ fix f .e].

• Λe(Λi(v)) is a redex, and its reduction is v.

• run(v) is a redex if comp(·;v) is defined, and its reduction is
comp(·;v).

Given expressionse = E[e1] ande′ = E[e′1], we writee→ e′ and
saye reduces toe′ in one step ife1 is a redex ande′1 is its reduction.

2.2 Key Properties

We first establish the following substitution lemma.

LEMMA 2.3. (Substitution) Assume that∆,∆0;Γ,Γ0 ` e : τ is
derivable and∆;Γ ` (Θ;θ) : (∆0;Γ0) holds. Then∆;Γ ` e[θ] : τ[Θ]
is derivable.

PROOF. The proof follows from structural induction on the typing
derivation of∆,∆0;Γ,Γ0 ` e : τ.

We now define a functionG(·) as follows that maps a given expres-
sion variable context to a type environment.

G(/0) = ε G(Γ,x : τ) = τ :: G(Γ)

LEMMA 2.4. Let Γ bexf1 : τ1, . . . ,xfn : τn. If /0 ` Γ [ok] holds and
/0; /0 ` v : 〈G(Γ),τ〉 is derivable, then/0;Γ ` comp(xf1, . . . ,xfn;v) : τ
is derivable.

PROOF. This follows from structural induction onv.

THEOREM 2.5. (Subject Reduction) Assume/0; /0 ` e : τ is deriv-
able. If e→ e′ holds, then/0; /0 ` e′ : τ is derivable.

PROOF. With Lemma 2.3 and Lemma 2.4, the proof follows from
structural induction on the typing derivation of/0; /0 ` e : τ.

THEOREM 2.6. (Progress) Assume/0; /0 ` e : type is derivable.
Then e is either a value or e→ e′ holds for some expression e′.

PROOF. With Proposition 2.1, the theorem follows from structural
induction on the typing derivation of/0; /0 ` e : τ.

Combining Theorem 2.5 and Theorem 2.6, we clearly have that
the evaluation of a well-typed closed expressione in λcode either
reaches a value or continues forever. In particular, this indicates that
the problem of free variable evaluation can never occur inλcode.

2.3 Meta-Programming with λcode

It is already possible to do meta-programming withλcode. For in-
stance, we can first form an external language MLcodeby extending
ML with code constructors (Lift, One, Shi, App, Lam, Fix) and the
special functionrun, and then employ a type inference algorithm
(e.g., one based on the one described in [4]) to elaborate programs
in MLcode into programs, or more precisely typing derivations of
programs, inλcode.

As an example, we show that the functiongenEvalPolyin Section 1
can be implemented as follows, where we use[] for empty type
environmentε and<;> for the type constructor〈·, ·〉.

val plus = fn x: int => fn y: int => x + y
val mult = fn x: int => fn y: int => x * y
fun genEvalPoly (p) =

let
fun aux (p) =

if null (p) then Lift (0)
else App (App (Lift plus, Lift (hd p)),

App (App (Lift mult, One),
aux (tl p)))

withtype int list -> <int :: []; int>
in

Lam (aux p)
end

withtype int list -> <[]; int -> int>

Thewithtype clause following the definition of the functionauxis
a type annotation indicating thatauxexpects to be assigned the type

typecon (type, type) FOAS =
{’g,’a}. (’g,’a) FOASlift of ’a

| {’g,’a}. (’a * ’g, ’a) FOASone
| {’g,’a1,’a2}.

(’a1 * ’g, ’a2) FOASshi of (’g, ’a2) FOAS
| {’g,’a1,’a2}.

(’g, ’a1 -> ’a2) FOASlam of (’a1 * ’g, ’a2) FOAS
| {’g,’a1,’a2}.

(’g, ’a2) FOASapp of
(’g, ’a1 -> ’a2) FOAS * (’g, ’a1) FOAS

| {’g, ’a}. (’g, ’a) FOASfix of (’a * ’g, ’a) FOAS

typecon (type) ENV =
(unit) ENVnil

| {’g,’a}. (’a * ’g) ENVcons of ’a * (’g) ENV

(* ’fix x => e’ is the fixed point of ’fn x => e’ *)
fun comp (FOASlift v) = (fn env => v)

| comp (FOASone) = (fn (ENVcons (v, _)) => v)
| comp (FOASshi e) = let

val c = comp e
in fn (ENVcons (_, env)) => c env end

| comp (FOASlam e) = let
val c = comp e

in fn env => fn v => c (ENVcons (v, env)) end
| comp (FOASapp (e1, e2)) = let

val c1 = comp e1
val c2 = comp e2

in fn env => (c1 env) (c2 env) end
| comp (FOASfix e) = let

val c = comp e
in fn env => fix v => c (ENVcons (v, env) end

withtype {’g,’a}. (’g,’a) FOAS -> (’g ENV -> ’a)

fun run e = (comp e) (ENVnil)
withtype {’a}. (unit, ’a) FOAS -> ’a

Figure 5. Implementing code constructors andrun

(int)list→ 〈int :: ε, int〉, that is,auxtakes an integer list and returns
some code of typeint in which the first and only free variable has
type int. Similarly, thewithtype clause forgenEvalPolymeans
thatgenEvalPolytakes an integer list and returns some closed code
of type int→ int.

Given the obvious meaning ofnull, hd andtl, it should be straight-
forward to relate the ML-like concrete syntax used in the above
program to the syntax of (properly extended)λcode. Evidently, this
kind of programming style is at least unwieldy if not impractical.
To some extent, this is just like writing meta-programs in Scheme
without using the backquote/comma notation. Therefore, we are
naturally led to provide some syntactic support to facilitate meta-
programming.

2.4 Embeddingλcode into λ2,Gµ

Before presenting syntactic support for meta-programming, we
show a direct embedding ofλcode in λ2,Gµ, whereλ2,Gµ is an inter-
nal language that essentially extends the second order polymorphic
λ-calculus with guarded recursive (g.r.) datatype constructors [35].
This simple and interesting embedding, which the reader can skip
without affecting the understanding of the rest of the paper, indi-
cates that the code constructors inλcode can be readily interpreted
through g.r. datatypes.

In Figure 5, we use some concrete syntax of ML2,Gµ to de-
clare a binary g.r. datatype constructor(·, ·)FOAS, where ML2,Gµ
[35] is an external language ofλ2,Gµ. The code construc-
tors Lift,One,Shi,App,Lam,Fix have their counterpartsFOASlift,
FOAone, FOAshi, FOAapp, FOASlam, FOASfixin λ2,Gµ.

We use a type inλ2,Gµ for representing a type environment inλcode;
the unit type1 represents the empty type environmentε, and the
type constructor∗, which is for constructing product types, rep-
resents the type environment constructor ::; the type constructor
(·, ·)FOASrepresents〈·, ·〉. Formally, we define a translation| · | as
follows, which translates type environments and types inλcode into
types inλ2,Gµ.

|ε| = 1
|τ :: G| = |τ| ∗ |G|
|αγ| = αγ

|τ1→ τ2| = |τ1| → |τ2|
|〈G,τ〉| = (|G|, |τ|)FOAS

|∀αγ : κ.τ| = ∀αγ.|τ|

The functionrun is implemented in Figure 5. We use awithtype
clause for introducing a type annotation. The type annotation
for run indicates thatrun is expected to be assigned the type
∀α.(1,α)FOAS→ α, which corresponds to the type∀α.〈ε,α〉 → α
in λcode. However, it needs to be pointed out that this implementa-
tion of run cannot support run-time code generation, for which we
need a (primitive) function that can perform compilation at run-time
and then upload the code generated from the compilation.

With this embedding ofλcodein λ2,Gµ, we are able to construct pro-
grams for performing analysis on typeful code representation. For
instance, the functioncompdefined in Figure 5 is such an example.

3 The Languageλ+
code

We extendλcode to λ+
code with some meta-programming syntax

adopted from Scheme and MetaML.

expressions e ::= . . . | ‘(e) | ˆ(e)

Loosely speaking, the notation ‘(·) corresponds to the backquote
notation in Scheme (or the notation〈·〉 in MetaML), and we use ‘(e)
as the code representation fore. On the other hand, ˆ(·) corresponds
to the comma notation in Scheme (or the notation ˜(·) in MetaML),
and we use(̂e) for splicing the codee into some context. We refer
‘(·) and (̂·) as meta-programming syntax.

The expression variable contextΓ is now defined as follows,

exp. var. ctx. Γ ::= /0 | Γ,xf@k : τ

wherexf@k stands for variables at levelk≥ 0 and we use the name
staged variablefor xf@k. Intuitively, an expressione in the empty
evaluation context is said to be at level 0; if an occurrence ofe in
e0 is at levelk, then the occurrence ofe in ‘(e0) is at levelk+ 1; if
an occurrence ofe in e0 is at levelk+1, then the occurrence ofe in
ˆ(e0) is at levelk; if an occurrence oflam x.e1 or fix f .e1 is at level
k, thenx or f is bound at levelk. A declared staged variablexf@k
in Γ simply indicates thatxf is to be bound at levelk.

3.1 Static Semantics

For each natural numberk, letposk be the set{1, . . . ,k}, or formally
{n | 0< n≤ k}. We useG for finite mappings from positive integers
to type environments such that the domains ofG are always equal
to posk for somek. In particular, we use/0 for the mappingG such

thatdom(G) = pos0. We write∆ `G
k Γ [ok] to mean that

Typing rules ∆;Γ `G
k e : τ

∆ `G
k Γ [ok] Γ(xf@0) = τ

∆;Γ `G
k xf : τ

(ty-var-0)

∆ `G
k+1 Γ [ok] Γ(xf@(k+1)) = τ

∆;Γ `G
k+1 xf : τ

(ty-var-1)

Σ(c) = ∀∆0.(τ1, . . . ,τn)⇒ τ ∆ `G
k Γ [ok]

∆ `Θ : ∆0 ∆;Γ `G
k ei : τi [Θ] for i = 1, . . . ,n

∆;Γ `G
k c(e1, . . . ,en) : τ[Θ]

(ty-cst)

∆;Γ,x@k : τ1 `
G
k e : τ2

∆;Γ `G
k lam x.e : τ1→ τ2

(ty-lam)

∆;Γ `G
k e1 : τ1→ τ2 ∆;Γ `G

k e2 : τ1

∆;Γ `G
k e1(e2) : τ2

(ty-app)

∆;Γ, f @k : τ `G
k e : τ

∆;Γ `G
k fix f .e : τ

(ty-fix)

∆;Γ `G+G
k+1 e : τ

∆;Γ `G
k ‘(e) : 〈G(k+1;Γ),τ〉

(ty-encode)

∆;Γ `G
k e : 〈G(k+1;Γ),τ〉

∆;Γ `G+G
k+1 ˆ(e) : τ

(ty-decode)

∆,αγ : κ;Γ ` /0
0 v : τ ∆ ` /0

0 Γ [ok]

∆;Γ ` /0
0 Λi(v) : ∀αγ : κ.τ

(ty-iLam)

∆;Γ ` /0
0 e : ∀αγ : κ.τ ∆ ` τG : κ

∆;Γ ` /0
0 Λe(e) : τ[αγ 7→ τG]

(ty-eLam)

Figure 6. The typing rules for λ+
code

1. ∆ ` Γ(xf) : typefor eachxf ∈ dom(Γ), and

2. dom(G) = posk, and

3. ∆ ` G(n) : envfor eachn∈ dom(G).

In addition, we introduce the following definitions.

• GivenG, k> 0 andΓ, we defineG(k;Γ) as follows.

G(k; /0) = G ;
G(k;Γ,x@n : τ) = τ :: G(k;Γ) if n = k;
G(k;Γ,x@n : τ) = G(k;Γ) if n 6= k.

• GivenG , Γ andτ, we defineG(0;Γ;τ) = τ and

G(k;Γ;τ) = G(k−1;Γ;〈G(k;Γ),τ〉)

for k ∈ dom(G), whereG = G(k). We write G(Γ;τ) for
G(k;Γ;τ) if dom(G) = posk.

• GivenG andG such thatdom(G) = posk, we useG + G for
the mappingG1 such thatdom(G1) = posk+1, G1(n) = G(n)
for eachn∈ posk andG1(k+1) = G.

We use∆;Γ `G
k e : τ for a typing judgment inλ+

code, where we re-

quire∆ `G
k Γ [ok]. Intuitively, G(k) stands for the initial type envi-

ronment for code at levelk. We present the typing rules forλ+
code

in Figure 6. Note that polymorphic code is only allowed to occur at
level 0.

3.2 Translation from λ+
code into λcode

We introduce some notations needed in the following presentation.
For n ≥ 0, we useΛi

n(e) for Λi(. . .(Λi(e)) . . .), where there are
n occurrences ofΛi , and we useΛe

n(e) similarly. Also, we now
use xfs for a sequence of staged variables, that is,xfs is of the
form xf1@k1, . . . ,xfn@kn. For eachk> 0, we definevark(xfs;xf)
as follows under the assumption thatxf@k occurs in xfs: for
xfs= (xfs1,xf1@k1), vark(xfs;xf) is

Λe
k+1(Onek) if k1 = k andxf1 = xf ;

Λe
k+2(Shik)(vark(xfs1;xf)) if k1 = k andxf1 6= xf ;

vark(xfs1;xf) if k1 6= k

In Figure 7, we define a translationtransk(·; ·) for eachk≥ 0 that
translates expressions inλ+

code into those inλcode. We first de-
fine some functions that are needed in the definition oftransk(·; ·).
These functions basically generalize the code constructors we have.
Givene, e1, . . . ,en, we writeLiftn(e) for Lift(. . .(Lift(e)) . . .), where
there aren occurrences ofLift; and Appn(e)(e1) . . .(en) for e if
n = 0, or for

App(Appn−1(e) . . .(en−1),en)

if n> 0; andAppn
k(e)(e1) . . .(en) for e if n = 0, or for

Λe
k+2(Appk)(Appn−1

k (e) . . .(en−1))(en)

if n> 0. Given type environmentsG1, . . . ,Gn and typeτ, we write
〈G1, . . . ,Gn;τ〉 for 〈G1,〈. . . ,〈Gn,τ〉 . . .〉〉. With this notation, we
have G(Γ;τ) = 〈G1(1;Γ), . . . ,Gk(k,Γ);τ〉, where G = /0 + G1 +
. . .+Gk.

A crucial property of transk(·; ·) is captured by the following
lemma, which consists of the main technical contribution of the
paper.

LEMMA 3.1. Assume that∆;Γ `G
k e : τ is derivable inλ+

code and
Γ is of the formxf1@k1 : τ1, . . . ,xfn@kn : τn. Then ∆;(Γ)0 `
transk(xf1@k1, . . . ,xfn@kn;e) : G(Γ;τ) is derivable inλcode, where
(Γ)0 is defined as follows:

(/0)0 = /0
(Γ,x@0 :τ) = (Γ)0,x : τ

(Γ,x@(k+1) : τ)0 = (Γ)0

PROOF. The proof follows from structural induction on the typing

derivation of∆;Γ `G
k e : τ.

Given an expressione in λ+
code, we writetrans(e) for trans0(/0;e) (if

it is well-defined) and call it the translation ofe.

THEOREM 3.2. Assume that/0; /0 ` /0
0 e : τ is derivable. Then/0; /0 `

trans(e) : τ is derivable.

PROOF. This immediately follows from Lemma 3.1.

The programmer can now construct a meta-program inλ+
code

that may (and probably should) make use of meta-programming

syntax and then assign it the dynamic semantics of its translation
in λcode. In other words, we may just treat meta-programming
syntax as mere syntactic sugar. This is precisely the significance of
Theorem 3.2.

We conclude this section with an example to show how the type sys-
tem ofλ+

codecan prevent free variable evaluation. Let us recall the
example:<fn x => ˜(run <x>)> in MetaML, whose evaluation
leads to free variable evaluation. Inλ+

code, the example corresponds
to e = ‘(lam x.ˆ(run(‘(x)))). Clearly, trans(e) = trans0(/0;e) =
Lam(run(One)). Note that the type of the expressionOne must
equal〈τ :: G,τ〉 for someG andτ but run is only allowed to be ap-
plied to an expression whose type is〈ε,τ〉 for someτ. Therefore,
trans(e) is ill-typed. By Theorem 3.2,e is also ill-typed inλ+

code
and thus should be rejected.

3.3 Some Remarks

We mention a few subtle issues so as to facilitate the understanding
of λ+

code.

Bound Variables at Stagek>0 At levelk for somek>0, a bound
variable merely represents a deBruijn index and a binding may van-
ish or occur “unexpectedly”. For instance, lete be the expression
‘(lam x.ˆ(f ‘x)) and e′ = trans(e) = Lam(f (One)).

• Let f be the identity function. Thene′ evaluates toLam(One),
which represents the codelam x.x.

• Let f be the shift functionlam x.Shi(x). Thene′ evaluates to
Lam(Shi(One)), which represents the codelam x.y for some
free variabley that is distinct fromx; there is no binding be-
tweenLamandOnein e′.

• Let f be the lift functionlam x.Lift(x). Thene′ evaluates to
Lam(Lift(One)) and run(e′) evaluates tolam x.One (not to
lam x.Lift(x)); there is no “expected” binding betweenLam
andOnein e′. Let e0 be the expressionrun(run(e′)(1)). Then
e0 is rejected as the expressionrun(e′)(1), which evaluates to
One, cannot be assigned a type of the form〈ε,τ〉.4

Cross-Stage PersistenceIn meta-programming, a situation often
arises where a value defined at an early stage needs to be used at
a later stage. For instance, in the expression ‘(lam x.x+ x), the
function +, which is defined at stage 0, is used at stage 1. This
is called cross-stage persistence (CSP) [32]. As is indicated in
the typing rules(ty-var-0) and(ty-cst), CSP for variables at stage
0 and constants is implicit inλ+

code. However, for variables in-
troduced at stagek > 0, CSP needs to be explicit. For instance,
‘(lam x.‘(lam y.y(x))) is ill-typed inλ+

codeas the variablex is intro-
duced at stage 1 but used at stage 2. To make it typable, the pro-
grammer needs to insert % in front ofx: ‘(lam x.‘(lam y.y(%x))),
where % is a shorthand for ˆLift, that is, %(e) represents ˆ(Lift(e))
for any expressione. Note thatLift can also be defined as ‘%, that
is, Lift(e) can be treated as ‘(%e) for any expressione.

4In ν [21], e0 cannot be typed, either. However,e0 can be
typed in the current implementation of MetaML [29] and MetaO-
Caml [30]; in the formere0 evaluates to 1 (which we suspect may be
caused by an implementation error) but in the latter the evaluation
of e0 raises a run-time exception caused by free variable evaluation.

Liftn : ∀γ1 . . .∀γn.∀α.α→ 〈γ1, . . . ,γn;α〉
Liftn = Λi

n+1(lam x.Liftn(x))

Lamn : ∀γ1 . . .∀γn.∀α1.∀α2.〈γ1, . . . ,γn−1,α1 :: γn;α2〉 → 〈γ1, . . . ,γn;α1→ α2〉
Lam1 = Λi

3(lam x.Lam(x))
Lamn+1 = Λi

n+3(lam x.App(Lift(Λe
n+2(Lamn)),x))

Appn : ∀γ1 . . .∀γn.∀α1.∀α2.〈γ1, . . . ,γn;α1→ α2〉 → 〈γ1, . . . ,γn;α1〉 → 〈γ1, . . . ,γn;α2〉
App1 = Λi

3(lam x1.lam x2.App(x1,x2))
Appn+1 = Λi

n+3(lam x1.lam x2.App(App(Lift(Λe
n+2(Appn)),x1),x2))

Fixn : ∀γ1 . . .∀γn.∀α.〈γ1, . . . ,γn−1,α :: γn;α〉 → 〈γ1, . . . ,γn;α→ α〉
Fix1 = Λi

2(lam x.Fix(x))
Fixn+1 = Λi

n+2(lam x.App(Lift(Λe
n+1(Fixn)),x))

Onen : ∀γ1 . . .∀γn.∀α.〈γ1, . . . ,γn−1,α :: γn;α〉
One1 = Λi

2(One)
Onen+1 = Λi

n+2(Lift(Λe
n+1(Onen)))

Shin : ∀γ1 . . .∀γn.∀α1.∀α2.〈γ1, . . . ,γn;α2〉 → 〈γ1, . . . ,γn−1,α1 :: γn;α2〉
Shi1 = Λi

3(lam x.Shi(x))
Shin+1 = Λi

n+3(App(Lift(Λe
n+2(Shin)),x))

trans0(·; ·)

trans0(xfs;xf) = xf if xf@0 occurs inxfs
trans0(xfs;c(e1, . . . ,en)) = c(trans0(xfs;e1), . . . , trans0(xfs;en))

trans0(xfs; lam x.e) = lam x.trans0(xfs,x@0;e)
trans0(xfs;e1(e2)) = trans0(xfs;e1)(trans0(xfs;e1))
trans0(xfs;fix f .e) = fix f .trans0(xfs, f @0;e)
trans0(xfs;Λi(e)) = Λi(trans0(xfs;e))
trans0(xfs;Λe(e)) = Λe(trans0(xfs;e))

trans0(xfs; ‘(e)) = trans1(xfs;e)

trans1(·; ·)

transk(xfs;xf) = Lift(xf) if xf@0 occurs inxfs
transk(xfs;xf) = var1(xfs;xf) if xf@1 occurs inxfs

trans1(xfs;c(e1, . . . ,en)) = Appn(Lift(lamx1 . . . lamxn.c(x1, . . . ,xn)))(trans1(xfs;e1)) . . .(trans1(xfs;en))
trans1(xfs; lam x.e) = Lam(trans1(xfs,x@1;e)
trans1(xfs;e1(e2)) = App(trans1(xfs;e1), trans1(xfs;e2))
trans1(xfs;fix f .e) = Fix(trans1(xfs, f @1;e))

trans1(xfs; ‘(e)) = trans2(xfs;e)
trans1(xfs; ˆ(e)) = trans0(xfs;e)

transk(·; ·) for k> 1

transk(xfs;xf) = Liftk(xf) if xf@0 occurs inxfs
transk(xfs;xf) = vark(xfs;xf) if xf@k occurs inxfs

transk(xfs;c(e1, . . . ,en)) = Appn
k(Liftk(lamx1 . . . lamxn.c(x1, . . . ,xn)))(transk(xfs;e1)) . . .(transk(xfs;en))

transk(xfs; lam x.e) = Λe
k+2(Lamk)(transk(xfs,x@k;e)

transk(xfs;e1(e2)) = Λe
k+2(Appk)(transk(xfs;e1))(transk(xfs;e2))

transk(xfs;fix f .e) = Λe
k+1(Fixk)(transk(xfs, f @k;e)

transk(xfs; ‘(e)) = transk+1(xfs;e)
transk(xfs; ˆ(e)) = transk−1(xfs;e)

Figure 7. The definition of transk(·; ·) for k≥ 0

4 Meta-Programming with λ+
code

We now need an external language ML+
code for the programmer to

construct meta-programs and then a process to translate such pro-
grams into typing derivations in (properly extended)λ+

code. We
present one possible design of ML+

code as follows, whereb is for
base types such asbool, int, etc.

types τ ::= b | α | τ→ τ | 〈G,τ〉
type env. G ::= γ | ε | τ :: G
type schemes σ ::= τ | ∀α.σ
expressions e ::= x | f | c(e1, . . . ,en) | if(e1,e2,e3) |

lam x.e | lam x : τ.e | e1(e2) |
fix f .e | fix f [α1, . . . ,αn] : τ.e |
let x = e1 in e2 end | (e : τ)
‘(e) | ˆ(e)

The only unfamiliar syntax isfix f [α1, . . . ,αn] : τ.e, which we use
to support polymorphic recursion; this expression is expected to be
assigned the type schemeσ = ∀α1 . . .∀αn.τ.

We have implemented a type inference algorithm based on the
one in [4] that supports the usual let-polymorphism. Like in
Haskell [22], if the type of a recursive function is given, then poly-
morphic recursion is allowed in the definition of the function.

We are now ready to present some examples of meta-programs in
ML+

code.

Example 1 The previously defined functiongenEvalPolycan now
be implemented as follows, which makes no explicit use of code
constructors.

fun genEvalPoly (p) =
let

fun aux p x =
if null (p) then Lift (0)
else ‘(hd p + ˆx * ˆ(aux (tl p) x))

withtype
{’g}. int list -> <’g; int> -> <’g; int>

in
‘(fn x => ˆ(aux p ‘x))

end
withtype {’g}. int list -> <’g; int -> int>

Note that the type annotations, which can be automatically inferred,
are presented solely for making the program easier to understand.

Example 2 The following program implements the Ackermann
function.

fun ack m n =
if m = 0 then n + 1
else if n = 0 then ack (m-1) 1

else ack (m-1) (ack m (n-1))
withtype int -> int -> int

We can now define a functiongenAckas follows such that the func-
tion returns the code for computingack(m) when applied to a given
integerm.

fun genAck m =
if m = 0 then ‘(fn n => n+1)
else

‘(fun f (n) =>
let

val f’ = ˆ(genAck (m-1))
in

if n = 0 then f’ 1 else f’ (f (n-1))

end)
withtype {’g}. int -> <’g; int -> int>

We use the syntax‘(fun f (n) => ...) for

‘(fix f => (fn n => ...))’,

which translates into something of the formFix(Lam(...)). This
shows an interesting use of recursion at level 1. Also, we point out
that polymorphic recursion is required in this example.5

Example 3 We contrast an unstaged implementation of inner
product (innerProd) with a staged implementation of inner prod-
uct (genInnerProd) in Figure 8. Given a natural numbern,
genInnerProd(n) returns the code for some functionf1; given an
integer vectorv1 of lengthn, f1 returns the code for some func-
tion f2; given an integer vectorv2 of lengthn, f2 returns the inner
product ofv1 andv2. For instance, ifn = 2, then f1 is basically
equivalent to the function defined below;

fn v1 => ‘(fn v2 =>
0 + ˆ(Lift (sub (v1, 0))) * sub (v2, 0)

+ ˆ(Lift (sub (v1, 1))) * sub (v2, 1))

if v1[0] = 6 andv1[1] = 23, then f2 is basically equivalent to the
function defined below.

fn v2 => 0 + 6 * sub (v2, 0) + 23 * sub (v2, 1)

Notice that this example involves expressions at level 2 and the use
of a CSP operator %.

5 Extensions

It is straightforward to extendλcode(and subsequentlyλ+
code) to sup-

port additional language features such as conditionals, pairs, refer-
ences, etc. For instance, in order to support conditional expressions
of the form if(e1,e2,e3), we introduce a code constructorIf and
assign it the following type;

∀γ∀α.〈γ,bool〉 → 〈γ,α〉 → 〈γ,α〉 → 〈γ,α〉
we then defineIfn as we have done for the previous code construc-
tors in Figure 7, and extend the definition oftransk(·; ·) properly for
k≥ 0.

It is even easier to extendλcode with pairs and references. For in-
stance, in order to support references, all we need to assume is
a type constructor(·)ref and the following functions of the given
types, where1 stands for the unit type.

ref : ∀α.α→ (α)ref
deref : ∀α.(α)ref→ α

update : ∀α.(α)ref→ α→ 1

It is standard to assign dynamic semantics toref, derefandupdate,
and we omit the details. As an example, the following expression
‘(lam x.lam y.update(y)(deref(x))) is translated into

Lam(Lam(App(App(Lift(update),One),
App(Lift(deref),Shi(One)))))

In [1], it is argued that a program corresponding to the following
one would cause the problem of free variable evaluation to occur in
MetaML [33] asr stores some open code when it is dereferenced.

let val r = ref ‘1
val f = ‘(fn x => ˆ(r := ‘(x+1); ‘2)

in run (!r) end

5To avoid polymorphic recursion, we need to change
genAck(m-1) into Shi(Shi(genAck(m-1))) in the implementa-
tion.

fun innerProd n = (* unstaged implementation of inner product *)
let

fun aux i v1 v2 sum =
if i < n then aux (i+1) v1 v2 (sum + sub (v1, i) * sub (v2, i)) else sum

withtype int -> int -> int array -> int array -> int
in

fn v1 => fn v2 => aux 0 v1 v2 0
end

withtype int -> int array -> int array -> int

fun genInnerProd n = (* staged implementation of inner product *)
let

fun aux i v1 v2 sum =
if i < n then

aux (i+1) v1 v2 ‘‘(ˆˆsum + %(sub (ˆv1, i)) * sub (ˆˆv2, i))
else sum

withtype {’g1,’g2}. int -> <’g1; int array> ->
<’g1,’g2; int array> -> <’g1,’g2; int> -> <’g1,’g2; int>

in
‘(fn v1 => ‘(fn v2 => ˆˆ(aux i ‘v1 ‘‘v2 0)))

end
withtype {’g1,’g2}. int -> <’g1; int array -> <’g2; int array -> int> >

Figure 8. A meta-programming example: inner product

This, however, cannot occur inλ+
code as the above program is ill-

typed: if r is assigned the type(〈ε, int〉)ref, then it cannot be used
to store open code; ifr is assigned a type(〈G, int〉)ref for some
nonemptyG, then the code stored in it cannot be run.

With value restriction, it is also straightforward to support let-
polymorphism in code: we can simply treatlet x = v in eend as
syntactic sugar fore[x 7→ v].

What seems difficult is to treat pattern matching in code. One ap-
proach is to translate general pattern matching into the following
form of fixed pattern matching for sum types,

casee0 of inl(x1)⇒ e1 | inr(x2)⇒ e2

and then introduce three code constructorsInl, Inr andCaseOfof
the following types,

∀γ∀α1∀α2.〈γ,α1〉 → 〈γ,α1 + α2〉
∀γ∀α1∀α2.〈γ,α2〉 → 〈γ,α1 + α2〉
∀γ∀α1∀α2∀α3.
〈γ,α1 + α2〉 → 〈α1 :: γ,α3〉 → 〈α2 :: γ,α3〉 → 〈γ,α3〉

respectively. The rest becomes straightforward and we omit the
details.

An alternative is to introduce a “CaseOf” code constructor for every
declared datatype, and a code constructor for each value constructor
associated with the datatype. This approach is more flexible than
the previous one in practice but still has difficulty supporting nested
patterns. We plan to introduce first-class patterns to better address
the issue in the future.

6 Related Work and Conclusion

Meta-programming, which can offer a uniform and high-level view
of the techniques for program generation, partial evaluation and
run-time code generation, has been studied extensively in the lit-
erature.

An early reference to partial evaluation can be found in [13], where
the three Futamura projections are presented for generating compil-
ers from interpreters. The notion ofgenerating extensions, which

is now often called staged computation, is introduced in [12] and
later expanded into multi-level staged computation [15, 14]. Most
of the work along this line attempts to stage programs automati-
cally (e.g., by performing binding-time analysis) and is done in an
untyped setting.

In [7], a lambda-calculusλ based on the intuitionistic modal logic
S4 is presented for studying staged computation in a typed set-
ting. Given a typeA, a type constructor , which corresponds to a
modality operator in the logic S4, can be applied toA to form a type

A for (closed) code of typeA. With this feature, it becomes pos-
sible to verify whether a program with explicit staging annotations
is indeed staged correctly. However, only closed code is allowed to
be constructed inλ , and this can be a rigid restriction in practice.
For instance, the usual power function, which is defined below,

fun power n x = (* it returns the nth power of x *)
if n = 0 then 1 else x * power (n-1) x

can be staged inλ+
codeas follows in two different manners.

fun power1 n =
if n = 0 then ‘(fn x => 1)
else ‘(fn x => x * ˆ(power1 (n-1)) x)

fun power2 n = let
fun aux i x =
if i = 0 then ‘1 else ‘(ˆx * ˆ(aux (i-1) x))

in ‘(fn x => ˆ(aux n ‘x)) end

However, the second version (power2) does not have a counterpart
in λ as it involves the use of open code: there is a free variable in
the code produced by(aux n ‘x).

An approach to addressing the limitation is given in [6], where a
type constructor© is introduced, which corresponds to the modal-
ity in discrete temporal logic for propositions that are true at the
subsequent time moment. Given a typeA, the type©A is for code,
which may contain free variables, of typeA.6 This approach is es-

6Note that the functionrun is not present inλ© for otherwise
the problem of free variable evaluation would occur.

sentially used in the development of MetaML [33], an extension
of ML that supports typed meta-programming by allowing the pro-
grammer to manually stage programs with explicit staging annota-
tions. On one hand, when compared to untyped meta-programming
in Scheme, the type system of MetaML offers an effective approach
to capturing (pervasive) staging errors that occur during the con-
struction of meta-programs. On the other hand, when compared to
partial evaluation that performs automatic staging (e.g., in Similix),
the explicit staging annotations in MetaML offer the programmer
more flexibility and expressiveness.

However, as was first pointed out by Rowan Davies, the original
type system of MetaML contained a defect caused by free variable
evaluation (as the functionrun is available in MetaML) and there
have since been a number of attempts to fix the defect. For instance,
in [20], types for (potentially) open code are refined and it then
becomes possible to form types for closed code only. In general, a
value can be assigned a type for closed code only if the value does
not depend on any free program variables. This approach is further
extended [1] to handle references. Though sound, this approach
also rules out code that is safe to run but does contain free program
variables. We now use an example to illustrate this point. Lete1 be
the following expressions inλ+

code,

lam f .‘(lam x.ˆ(run(f (‘x))))

ande2 = trans(e1) = lam f .Lam(run(f (One))). Clearly,e2 can be
assigned a type of the following form:7

(〈τ1 :: G1,τ1〉 → 〈ε,〈τ2 :: G2,τ3〉〉)→ 〈G2,τ2→ τ3〉

However,e2 cannot be assigned a type in [20] or [1] as the type
systems there cannot assignf (‘x) a “closed code” type. Though
this is a highly contrived example, it nonetheless indicates some
inadequacy in the notion of closed types captured by these type
systems.

In [31], there is another type system that aims at assigning more
accurate types to meta-programs in MetaML. In the type system,
a notion of environment classifiers is introduced. Generally speak-
ing, environment classifiers are used to explicitly name the stages
of computation, and code is considered to be closed with respect to
an environment classifierα if α can be abstracted. This approach
is similar (at least in spirit) to the typing ofrunSTin Haskell [16].
To some extent, an environment classifier resembles a type envi-
ronment variableγ in λ+

codeand the type(α)〈t〉α for code of typet
that is closed with respect to an environmentα relates to the type
∀γ.〈γ, t〉 in λ+

code.

Another approach to addressing the limitation ofλ is presented
in [21]. Instead of refining the notion of (potentially open) code in
λ©, the calculusν in [21] relaxes the notion of closed code inλ
by extendingλ with a notion ofnamesthat is inspired by some
developments in Nominal Logic [27] and FreshML [28]. Given an
expression representing some code, the free variables in the code
are represented as certain distinct names; the set of these names,
which is called thesupportof the expression, is reflected in the
type of the expression. The code represented by an expression can
be executed only if the support of the expression is empty. Clearly,
the notion of a support inν corresponds to the notion of a type en-
vironment inλcode. The primary difference betweenν andλcode
as we see is that the development of the former is guided, implicitly
or explicitly, by the notion of higher-order abstract syntax while the
latter is based on a form of first-order abstract syntax.

7For example, this meanse2 can be applied to the function
lam x.Lift(x) (and the application evaluates toLam(One)) but not
to the functionlam x.x.

There were certainly earlier attempts in forming typeful code rep-
resentation. For instance, in a dependent type system such as LF, it
is fairly straightforward to form a typeexp(t) in themeta-language
for representing closed expressions of typet in theobjectlanguage.
Unfortunately, such typeful code representation seems unsuitable
for meta-programming as the strict distinction between the meta-
language and the object language makes it impossible for expres-
sions in the meta-language to be handled in the object language. In
particular, note that the code constructorLift is no longer definable
with this approach. An early approach to typeful code representa-
tion can be found in [25], where an inductively defined datatype is
formed to support typeful representation for terms in the second-
order polymorphicλ-calculus. This representation is higher-order
and supports both reflection (i.e., to map the representation of an
expression to the expression itself) and reification (i.e., to map an
expression to the representation of the expression). However, it
handles reification for complex values such as functions in a man-
ner that seems too limited to support (practical) meta-programming.
In [5], an approach is presented that implements (a form of) type-
ful h.o.a.s. in Haskell-like languages to represent simply typedλ-
terms. With this approach, it is shown that an implementation of
the normalizing function for simply typedλ-terms preserves types.
However, the limitation of the approach is also severe: It does not
support functions that take typeful h.o.a.s. as input (e.g., a function
like run in λcode).

In this paper, we present a novel approach to typed meta-
programming that makes use of a form of first-order typeful code
representation in which program variables are replaced with de-
Bruijn indices. We form a languageλcode in which expressions
representing code can be constructed through code constructors and
then executed through a special functionrun. Althoughλcode suf-
fices to establish a theoretical foundation for meta-programming,
it lacks proper syntax to support practical meta-programming. We
address the issue by extendingλcode into λ+

code with some meta-
programming syntax adopted from Scheme and MetaML; we first
form rules to directly type programs inλ+

codeand then define a trans-
lation from λ+

code into λcode for assigning dynamic semantics to
λ+

code. We also present examples in support of meta-programming
with λ+

code.

Furthermore, we feel that the concrete code representation in
λcode can be of great use in facilitating the understanding of
meta-programming. For instance, the considerably subtle differ-
ence between〈%〈e〉〉 and 〈〈%e〉〉 [31] can be readily explained
in λcode; the former and the latter are translated intoLift(e′) and
App(Lift(lift),e′), respectively, wheree′ is the translationtrans(e)
of e and lift is lam x.Lift(x); run(Lift(e′)) reduces toe′ and
run(App(Lift(lift),e′)) reduces toLift(v′), wherev′ is the value of
run(e′) (assuminge′ represents closed code); so the difference be-
tween〈%〈e〉〉 and〈〈%e〉〉 is clear: the former meanse is not exe-
cuted until the second stage while the latter, which requirese to be
closed, indicates thate is executed at the first stage and its value is
lifted into the second stage.

We also show thatλcodecan be embedded intoλ2,Gµ in a straightfor-
ward manner, establishing an intimate link between code construc-
tors and guarded recursive datatypes. This embedding immediately
gives rise to the possibility of constructing programs that perform
analysis on code.

In future, we are interested in a more flexible approach to handling
pattern matching in code. For this purpose, we seem to be in need
of first-class patterns. Also, we plan to study how names, instead
of deBruijn indices, can be used to form first-order typeful code
representation, and we believe this is an important step towards im-
plementing transformations for typed programs in a type-correct
manner.

7 Acknowledgment

We thank Walid Taha for his valuable comments on a previous ver-
sion of the paper and Joseph Hallett for his efforts on proofreading
the paper. Also, we thank some anonymous referees, whose com-
ments helped us raise the quality of the paper significantly.

8 References

[1] C. Calcagno, E. Moggi, and T. Sheard. Closed Types for a Safe Imper-
ative MetaML.Journal of Functional Programmng, 2003. (to appear).

[2] C. Chambers and D. Ungar. Customization: Optimizing Compiler
Technology for SELF. InProceedings of 16th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI
’89), pages 146–160, 1989.

[3] A. Church. A formulation of the simple type theory of types.Journal
of Symbolic Logic, 5:56–68, 1940.

[4] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. InConference Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages, pages 207–212, Albuquerque,
New Mexico, 1982.

[5] O. Danvy and M. Rhiger. A Simple Take on Typed Abstract Syntax in
Haskell-like Languages. InProceedings of the 5th International Sym-
posium on Functional and Logic Programming (FLOPS ’01), pages
343–358, Tokyo, Japan, March 2001.

[6] R. Davies. A temporal logic approach to binding-time analysis. In
Symposium on Logic in Computer Science (LICS ’96), pages 184–195,
1996.

[7] R. Davies and F. Pfenning. A Modal Analysis of Staged Computation.
Journal of ACM, 48(3):555–604, 2001.

[8] N. G. de Bruijn. Lambda calculus notation with nameless dummies.
Indagationes mathematicae, 34:381–392, 1972.

[9] L. P. Deutsch and A. M. Schiffman. Efficient Implementation of
Smalltalk-80 System. InProceedings of 11th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, pages 297–302, Salt
Lake City, Utah, 1984.

[10] S. Draves. Partial evaluation for media processing.ACM Computing
Surveys (CSUR), 30(3es):21, 1998.

[11] R. Kent Dybvig. Writing hygienic macros in Scheme with syntax-
case. Technical Report #356, Computer Science Department, Indiana
University, 1992.

[12] A. Ershov. On the partial computation principle.Information Process-
ing Letters, 6(2):38–41, 1977.

[13] Y. Futamara. Partial evaluation of computation process.Systems, com-
puters, controls, 2(5):45–50, 1971.

[14] R. Glück and J. Jørgensen. An automatic program generator for multi-
level specialization.Lisp and Symbolic Computation, 10(2):113–158,
1997.

[15] N. D. Jones, P. Sestoft, and H. Søndergaard. An expriment in partial
evaluation: the generation of a compiler generator. InRewriting Tech-
niques and Applications, pages 124–140. Springer-Verlag LNCS 202,
1985.

[16] J. Launchbury and S. Peyton-Jones. State in Haskell.Lisp and Sym-
bolic Computation, pages 293–342, 1995.

[17] M. Leone and P. Lee. Optimizing ml with run-time code generation.
In ACM SIGPLAN ’96 Conference on Programming Language Design
and Implementation, pages 137–148, Philadelphia, PA, June 1996.
ACM Press.

[18] H. Massalin.An Efficient Implementation of Fundamental Operating
System Services. Ph. D. dissertation, Columbia University, 1992.

[19] R. Milner, M. Tofte, R. W. Harper, and D. MacQueen.The Definition
of Standard ML (Revised). MIT Press, Cambridge, Massachusetts,
1997.

[20] E. Moggi, W. Taha, Z.-E.-A. Benaissa, and T. Sheard. An Idealized
MetaML: Simpler, and More Expressiove. InEuropean Symposium
on Programming (ESOP ’99), pages 193–207. Springer-Verlag LNCS
1576, 1999.

[21] A. Nanevski and F. Pfenning. Meta-Programming with Names and
Necessity. A previous version appeared in theProceedings of the
International Conference on Functional Programming (ICFP 2002),
pp. 206–217.

[22] S. Peyton Jones et al. Haskell 98 – A non-strict, purely functional
language. Available at
http://www.haskell.org/onlinereport/, Feb. 1999.

[23] F. Pfenning. Computation and Deduction. Cambridge University
Press. (to appear).

[24] F. Pfenning and C. Elliott. Higher-order abstract syntax. InProceed-
ings of the ACM SIGPLAN ’88 Symposium on Language Design and
Implementation, pages 199–208, Atlanta, Georgia, June 1988.

[25] F. Pfenning and P. Lee. A Language with Eval and Polymorphism.
In International Joint Conference on Theory and Practice in Soft-
ware Development, pages 345–359, Barcelona, Spain, March 1989.
Springer-Verlag LNCS 352.

[26] R. Pike, B. Locanthi, and J. Reiser. Hardware/Software Trade-offs for
Bitmap Graphics on the Blit.Software – Practice and Experience,
15(2):131–151, February 1985.

[27] A. M. Pitts. Nominal logic, a first order theory of names and bind-
ing. Information and Computation. To appear. (A preliminary version
appeared in theProceedings of the 4th International Symposium on
Theoretical Aspects of Computer Software(TACS 2001), LNCS 2215,
Springer-Verlag, 2001, pp 219–242.).

[28] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira,
editors,Mathematics of Program Construction. 5th International Con-
ference, MPC2000, Ponte de Lima, Portugal, July 2000. Proceedings,
volume 1837 ofLecture Notes in Computer Science, pages 230–255.
Springer-Verlag, Heidelberg, 2000.

[29] T. Sheard, W. Taha, Z. Benaissa, and E. Pasalic. MetaML. Available
athttp://www.cse.ogi.edu/PacSoft/projects/metaml/.

[30] W. Taha, C. Calcagno, L. Huang, and X. Leroy. MetaOCaml. Avail-
able athttp://www.cs.rice.edu/˜taha/MetaOCaml/.

[31] W. Taha and M. F. Nielsen. Environment classifiers. InProceedings
of the 30th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 26–37, New Orleans, January 2003.

[32] W. Taha and T. Sheard. Multi-Stage Programming with Explicit An-
notations. InProceedings of the Symposium on Partial Evaluation
and Semantic-Based Program Manipulation (PEPM), pages 203–217,
Amsterdam, 1997.

[33] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations.Theoretical Computer Science, 248(1-2):211–
242, 2000.

[34] A. Wright. Simple imperative polymorphism.Journal of Lisp and
Symbolic Computation, 8(4):343–355, 1995.

[35] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In Proceedings of the 30th ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 224–235, New Orleans, January
2003.

