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Abstract 1 Introduction

By allowing the programmer to write code that can generate code Situations often arise in practice where there is a need for writ-
at run-time, meta-programming offers a powerful approach to pro- ing programs that can generate programs at run-time. For in-
gram construction. For instance, meta-programming can often bestance, there are numerous cases (kernel implementation [18],
employed to enhance program efficiency and facilitate the construc- graphics [26], interactive media [10], method dispatch in object-
tion of generic programs. However, meta-programming, especially oriented languages [9, 2], etc.) where run-time code generation can
in an untyped setting, is notoriously error-prone. In this paper, we be employed to reap significant gain in run-time performance [17].
aim at making meta-programming less error-prone by providing a To illustrate this point, we define a functi@valPolyas follows in

type system to facilitate the construction of correct meta-programs. Scheme for evaluating a polynomiakt a given poink.

We first introduce some code constructors for constructing typeful

code representation in which program variables are replaced with (define (evalPoly p x)

deBruijn indices, and then formally demonstrate how such type-  (if (null? p)
ful code representation can be used to support meta-programming. 0
The main contribution of the paper lies in recognition and then for- (+ (car p) (* x (evalPoly (cdr p) x)))))

malization of a novel approach to typed meta-programming that is

practical, general and flexible. Note that we use a nonempty ligl a; ... a,) in Scheme to repre-

sent the polynomianx" + ... +a;x+ag. We now define a function
sumPolysuch thafsumPoly p xsreturns the sum of the values of
. . . a polynomialp at the points listed ixs
Categories and Subject Descriptors

(define (sumPoly p xs)
D.3.2 [Programming Languaged: Language Classifications— (1f (null? xs)

Applicative Languages 0
PP guag (+ (evalPoly p (car xs))

(sumPoly p (cdr xs)))))

General Terms When callingsumPoly we generally need to evaluatdigedpoly-
nomialrepeatedlyat different points. This suggests that we imple-
Languages, Theory mentsumPolywith the following strategy so as to makemPoly

more efficient.

We first define a functiogenEvalPolyas follows, where we make

Keywords use of the backquote/comma notation in Scheme.
Meta-Programming, Multi-Level Staged Programming, Typeful (define (genEvalPoly p)
Code Representation (define (aux p x)
(if (null? p)
0

*Partially supported by NSF grants no. CCR-0224244 and no. ‘(+ , (car p)

CCR-0229480 (* ,x ,(aux (cdr p) x)))))
‘(lambda (x) , (aux p 'x)))

When applied to a polynomiap, genEvalPolyreturns an s-
expression that represents a Procedure (in Scheme) for evaluating
p. For instance(genEvalPoly (3 2 1)) returns the following s-
expression,
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to lists, requires prior specific permission and/or a fee.

ICFP’03, August 25-29, 2003, Uppsala, Sweden. X2+ 2x + 3. Therefolre, given a polynomigb, we can call
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00 (eval (genEvalPoly p’()) to generate a procedurproc for



evaluating p'; presumably,(proc X) should execute faster than By associating wittHOASsome extra value constructors, we can
(evalPoly p % does. This leads to the following (potentially) more represent closed code of typeas expressions of typ@)HOAS

efficient implementation asumPoly In other words, we can defing)codeas (-)HOAS The function
. run can then be implemented by first translating h.o.a.s. trees into
(define (sumPoly p xs) ) (untyped) first-order abstract syntax (f.0.a.s.) tfessd then com-
(define proc (eval (genEvalPoly p) ' ())) piling the f.0.a.s. trees in a standard manner. Please see a recent
(define (aux xs) paper [35] for more details on such an implementation.

(if (null? xs)
0
(+ (proc (car xs)) (aux xs))))
(aux xs))

Though clean and elegant, there are some serious problems with
representing code as h.o.a.s trees. In general, it seems rather dif-
ficult, if not impossible, to manipulate open code in a satisfactory
manner when higher-order code representation is chosen. On the
gther hand, there is often a need to directly handle open code when

eta-programs are constructed. For instance, in the definition of

e functiongenEvalPoly the auxiliary functioraux returns some
open code containing one free program variable (which is closed
later). We feel it may make meta-programming too restrictive if
open code manipulation is completely disallowed.

Meta-programming, though useful, is notoriously error-prone in
general and approaches such as hygenic macros [11] have been pr
posed to address the issue. Programs generated at run-time ofte
contain type errors or fail to be closed, and errors in meta-programs
are generally more difficult to locate and fix than those in (ordi-

nary) programs. This naturally leads to a need for typed meta-
programming so that types can be employed to capture errors in

meta-programs at compile-time. . .
prog P Furthermore, higher-order code representation may lead to a subtle

problem. Suppose we need to convert the following h.o.a.sttree
which has the typé(int)HOAS— int)HOAS into some f.0.a.s. tree
in order to run the code representedtby

The first and foremost issue in typed meta-programming is the need
for properly representing typed code. Intuitively, we need a type
constructor(-)codesuch that for a given type (1)codeis the type

for expressions representing code of typélso, we need a func-
tion run such that for a given expressierof type (t)code run(e)
executes the code representecetand then returns a value of type  \we then need to apply the functioan to a variable ranging over

T when the execution terminates. Note that we cannot in general eypressions of typé(int) HOASHOASwhen making this conver-
execute open code, that is, code containing free program variablessjon, which unfortunately causes a run-time error. This is precisely

HOASlam (fn (x: (int HOAS) HOAS) => run Xx)

Therefore, for each type the type(t)codeshould only be for ex-  the problem ofree variable evaluatiora.k.a.open code extrusign
pressions representing closed code of type which we encounter when trying to evaluate the code:
A common approach to capturing the notion of closed code is <fn x:<int> => " (run <x>)>

through higher-order abstract syntax (h.o.a.s.) [3, 24, 23]. For
instance, the following declaration in Standard ML (SML) [19] in MetaML [33].
declares a datatype for representing pure untyped closed

expressions: In this paper, we choose a form of first-order abstract syntax trees to
represent code that not only support direct open code manipulation

datatype exp = but also avoid the problem of free variable evaluation. As for the
Lam of (exp —> exp) | App of exp * exp free program variables in open code, we use deBruijn indices [8] to

represent them. For instance, we can declare the following datatype

As an example, the representation of the untypeekpression in Standard ML to represent pure untype@xpressions.

AXAY.y(x) is given below:
. _ . _ datatype exp =
Lam(fn (x:exp) => Lam (fn (y:exp) => App(y, X)) One | Shi of exp | Lam of exp | App of exp * exp
Although it seems difficult, if not impossible, to declare a datatype ) . . . .

in ML for precisely representing typektexpressions, this can be Ve useOnefor the first free variable in a-expression an&hifor
readily done if we extend ML with guarded recursive (g.r.) datatype Shifting each free variable in &expression by one index. As an
constructors [35]. For instance, we can declare a g.r. datatypeexample, the expressiax.Ay.y(x) can be represented as follows:
constructor(-)HOAS and associate with it two value constructors .

HOASlamand HOASappthat are assigned the following types, re- Lam(Lam(App(One ShiOne))))

spectively? For representing typed expressions, we refirginto types of the

form (G, 1), where(, ) is a binary type constructor agistands for
:agﬁ.((a)HOﬁ;\_{SO:éE)H%AOSA; (a HHBO)ZOAS type environments, which are represented as sequences of types; an
avB.(a —B) (o) — (B)HOAS expression of typéG, T) represents some code of typén which
the free variables are assigned types@yand therefore the type
for closed code of typeis simply (g, 1), wheree is the empty type
environment.

Intuitively, for a given typer, (1)HOASIs the type for h.o.a.s. trees
that represent closed code of type As an example, the h.o.a.s.
representation of the simply typ@dexpressior\x : int.Ay : int —

int.y(x) is given below, . . . . .
ty(x)is given below, It is certainly cumbersome, if not completely impractical, to pro-

HOASlam (fn x:int HOAS => gram with f.0.a.s. trees, and the direct use of deBruijn indices fur-
HOASlam(fn y: (int -> int) HOAS => HOASapp (v, x))) ther worsens the situation. To address this issue, we adopt some
meta-programming syntax from Scheme and MetaML to facilitate
which has the typéint — (int — int) — int)HOAS the construction of meta-programs and then provide a translation to

eliminate the meta-programming syntax. We also provide interest-
INote thateval is a built-in function in Scheme that takes an  ing examples in support of this design.

s-expression and an environment as its arguments and returns the

value of the expression represented by the s-expression. SFor this purpose, we may need to introduce a constructor
°Note that, unlike a similar inductively defined type construc- HOASvarof the typeVa.string— (a)HOASfor representing free

tor [25], HOAScannot be inductively defined. variables.




kinds K = type|lenv
types T = a|11—12](G1)|Voy:K.T
type env. G = yle|l1:G
constants ¢ = ccjcf
const. fun.  cf = run
const.con. cc := Lift | One| Shi| App|Lam| Fix
expressions e = x| f|c(ey,...,en)|
lamx.e| ei(ep) | fix f.e|
N'(v) [N )
values v = x|co(vy,...,vn) |lam x.e| Al(v)
exp.var.ctx. I = 0|lx:t
typ.var.ctx. A = O0|Aa:type|Ay:env

Figure 1. The syntax forAcoge

The main contribution of the paper lies in recognition and then for-
malization of a novel approach to typed meta-programming that
is practical, general and flexible. This approach makes use of a
first-order typeful code representation that not only supports direct
open code manipulation but also prevents free variable evaluation.
Furthermore, we facilitate meta-programming by providing certain
meta-programming syntax as well as a type system to directly sup-
port it. The formalization of the type system, which is considerably
involved, constitutes the major technical contribution of the paper.

We organize the rest of the paper as follows. In Section 2, we in-
troduce an internal langua@dgoyqe and use it as the basis for typed
meta-programming. We then exteigyge to Acode in Section 3,
including some syntax to facilitate meta-programming. In Sec-
tion 4, we briefly mention an external language which is designed
for the programmer to construct programs that can eventually be
transformed into those mwde We also present some examples in

support of the practicality of meta-programming v\mj,de, In Sec-

tion 5, we introduce additional code constructors to support more
programming features such as references. Lastly, we mention som
related work and then conclude.

2 The LanguageAcode

In this section, we introduce a languaggge Which essentially ex-
tends the second-order polymorphicalculus with general recur-
sion (through a fixed point operat6x), certain code constructors
for constructing typeful code representation and a special function
run for executing closed code. The syntaxA@fgeis given in Fig-

ure 1. We provide some explanation on the syntax as follows.

e We use the kindsype and env for types and type environ-
ments, respectively. In addition, we useandy for the vari-
ables ranging over types and type environments, respectlvely,
andoy for either ana or ay.

We uset for types andG for type environments. A type en-
vironment assigns types to free expression variables in code.
For instancebool :: int :: € is a type environment which as-
signs the typebool andint to the first and the second expres-

sion variables, respectively. We ugs for either ar or aG.

We use(G,T) as the type for expressions representing code
of type 1T in which each free variable is assigned a type
by the type environmenG. For instance, the expression
App(One ShiOne)) can be assigned the tygéint — int) ::

int :: €,int) to indicate that the expression represents some
code of typant in which there are at most two free variables
such that the first and the second free variables have the types
int andint — int, respectively.

e The (code) constructorkift, One Shi Lam App and Fix are

Lift vy.va.(a) = (y,a)
Lam Vy.Vai.Vas.((ag 1y, 02)) = (y,01 — 0O2)
App 1 VY.Vop.Vao.((y, 01 — az), (Y, 01)) = (Y,02)
Fix vy.va.({(a iy, a)) = (y,a

One vy.va.() = (a 1y, a)

Shi Vy.Vaq.Vaz.((Y,01)) = (02 ::y,01)

run va.({e,a)) = a

Figure 2. The types of some constructors it¢coge

used for constructing expressions representing typed code in
which variables are replaced with deBruijn indices [8], and the
functionrunis for executing typed closed code represented by
expressions.

We differentiatelam-bound variablex from fix-bound vari-
ablesf; alam-bound variable is a value buffix-bound vari-
able is not. This differentiation mainly prepares for introduc-
ing effects into the system.

We useA(-) and A®(-) to indicate type abstraction and
application, respectively. For instance, the expression
(Aa.Ax : a.x)fint] in the Church style is represented as
A®(A'(lam x.x)). Later, the presence @f andA°® allows us

to uniquely determine the rule that is applied last in the typing
derivation of a given expression. Preparing for accommodat-
ing effects in\¢oge We impose the usual value restriction [34]

by requiring that\' be only applied to values.

Itis straightforward to extendl.ogeWith some base types (e.bgol
andint for booleans and integers, respectively) and constants and
functions related to these base types. Also, conditional expressions
can be readily added infg.oqe Later, we may form examples in-
volving these extra features so as to give a more interesting presen-
tation.

We assume a variable can be declared at most once in an expression

e(type) variable context (A). For an expression variable contéxt

we writedom(I") for the set of variables declaredlirandr (xf) = 1

if xf : T is declared irl. Note that similar notation also applies to
type variable contextA.

We use a signaturE to assign each constaot c-type of the fol-
lowing form,
YOy, D Kq.. Tn) =T

.en) for applying
,en. For constants of

YW * Km.(T1,

wheren indicates the arity of. We writec(ey, . ..
a constant of arity n to n argumentsy, ...
arity 0, we may writec for c().

For convenience, we may writéA for a list of quantifiersvoy; :
... VO : Km, Where

A=0,0y; 1K1,...,0p Km

Also, we may writeVa andVy for Va : typeandVy : eny, respec-
tively. In Figure 2, we list the c-types assigned to the code con-
structors and the functiomun. Note that a c-type inotregarded as
atype.

2.1 Static and Dynamic Semantics

We present the kinding rules fagqgein Figure 3. We use a judg-

ment of the formA F 1 : type(A+ G : eny) to mean that (G) is a
well-formed type (type environment) undér We useO for finite

mappings defined below ambm(©) for the domain of.

© [ ©foy— 1G]



Kinding rules AFT1G:K

A(oy) =K
AFay:K
ATy :type AFT15:type
ATy — T2 type
A-G:env AFT1:type
A+ (G,T) : type

ATy: K TG type
AFVOy: K.IG: type

AFe:env
AF-T:type AFG:env
AFT::G:env

Figure 3. The kinding rules for Acode

Note that]] stands for the empty mapping a@jay — 1G] stands
for the mapping that exten@®with a link formay to TG, where we
assuméay ¢ dom(@). We writetG[O] for the result of substituting

eachoy € dom(@) with ©(dy) in TG. The standard definition of
substitution is omitted here. We write © : Ag to mean that for
eachoy € dom(©) = dom(Ag), A+ O(ay) : Ag(Ty).

Given a type variable contetand an expression variable context
I, we write A+ T [ok] to mean thatA - ['(x) : typeis derivable
for everyx € dom(I'). We useA;T - e: 1 for a typing judgment
meaning that the expressiecan be assigned the typeinderA; T,
where we requird - I" [0k].

The typing rules forAcoge are listed in Figure 4. In the rule

(ty-iLam) , which introduceg\', the premisé - I [ok] ensures that
there are no free occurrencesogfin I".

PrROPOSITION 2.1. (Canonical Forms) Assume th@t0+ v: Tis
derivable. Then we have the following.

e |f T=11 — Tp, then vis of the fornam x.e.

e If T1=(G,11), then vis of one of the following forms: L ),
One, Shivy), Lam(v1), App(v1,V2) and Fix(vy).

e If T=V0y.K, then v is of the formi (vy).

PROOF The proposition follows from a straightforward inspection
of the typing rules in Figure 4. []

We use9 for finite mappings defined below:

6 = [|6xf— ¢

and writee[B] for the result of substituting eactf € dom(6) for
8(xf) in e. We write

AT+ (©:8) : (Ao To)

to meanA - © : Ag and for eachxf € dom(6) = dom(Ig), AT F
0(xF) : Fo(xT)[@).

We assign dynamic semanticstig,gethrough the use of evaluation

Typingrules A;Tke:t

AFT oK T(xf)=rt
ATEXF:T
>(c) =VAo.(T1,...,Tn) =T AFT [0K
AFO©:Ay ATHe:7 @] fori=1,...,n
AT Fc(er,...,en) : T[O]
AT x:TiHeit2
ATFlamxe: 11— T2

(ty-var)

(ty-lam)

ATHFe :Ti—T1T2 ATkFe:1

AT He(e): 12

AT f:the:T

AT Hfix feert

Aoy:K;TFv:T ART [0K
AT FA(V):Voy: K.T

AT He:Voy: kT AFTIG:K
AT = NA8(e) : 1[ay +— 1G]

(ty-app)

(ty-fix)

(ty-iLam)

(ty-eLam)

Figure 4. The typing rules for Acoge

contexts, which are defined as follows.

H | C(Vl7 ce 7Vi717 E;a+l7 e
E(e) [ V(E) [ A%(E)

eval. ctx. E = ,en) |

Given an evaluation contef& and an expressiog) we usek e for
the expression obtained from replacing the Hple E with e.

We define a functiomompas follows, where we usefs for a se-

quence of distinct expression variablés Note thatcompis a func-
tion at meta-level.

comgxfs Lift(v)) = v
comgxfsxf;Ong = xf
comgxfs xf; Shiiv)) = comgxfsv)
comgxfsLamv)) = lam x.comgxfs x;V)
compxfs App(vy,v2)) = (compxfsvy))(comgXxfsvz))
comgxfsFix(v)) = fix f.compxfs f;v)

Intuitively, when applied to a sequence of distinct expression vari-

ablesxfs and a valuev representing some codepmpreturns the
code. For instance, we have

comg-, X, f; App(One ShiOne)) = f(x).

DEFINITION 2.2. We define redexes and their reductions as fol-
lows.

e (lamx.e)(v) is a redex, and its reduction ige— v].

o fix f.eis aredex, and its reduction i$fe— fix f.€].

o A®(Ai(v)) is a redex, and its reduction is v.

e run(v) is a redex if comp;v) is defined, and its reduction is
comg-; V).

Given expressione = E[e;] and€ = E[¢]], we writee — € and
sayereduces t& in one step ik is a redex ane is its reduction.



2.2 Key Properties

We first establish the following substitution lemma.

LEMMA 2.3. (Substitution) Assume that,Ag;,ToHe: T is
derivable and\;T - (©;0) : (Ao; o) holds. Themy; T F e[6)] : T[O)]
is derivable.

PrROOF The proof follows from structural induction on the typing
derivation ofA,Ag;,Tg-e: T.

We now define a functiofs(-) as follows that maps a given expres-
sion variable context to a type environment.

G(0)=¢ Grx:t)=1:6(IN
LEMMA 2.4. Letl bexfy:1y,...,Xfn : Tn. If 0+ T [0K holds and
0;0F v: (G(I),T) is derivable, the®; I - comgxfy, ..., xf; V) : T
is derivable.

ProoFE This follows from structural induction on [

THEOREM 2.5. (Subject Reduction) Assumgd + e: T is deriv-
able. If e— € holds, therd;0 - € : 1 is derivable.

PrROOF With Lemma 2.3 and Lemma 2.4, the proof follows from
structural induction on the typing derivation@f - e: 1. O

THEOREM 2.6. (Progress) Assum@;0 + e : type is derivable.
Then e is either a value or-e € holds for some expressioh e

PrROOF With Proposition 2.1, the theorem follows from structural
induction on the typing derivation @0+e: 1. [

typecon (type, type) FOAS =
{"g,’a}. ('g,"a) FOASlift of ’a
| {"g,"a}. ("a * 'g, "a) FOASone

| {"g,"al,’a2}.

("al * 'g, 'a2) FOASshi of (g, "a2) FOAS
| {'g,"al,’a2}.

("g, "al -> 'a2) FOASlam of ('al * 'g, "a2) FOAS
| {"g,"al,’a2}.

("g, "a2) FOASapp of
("g, "al -> "a2) FOAS * ('g, 'al) FOAS
| {"g, "a}. ("g, "a) FOASfix of ('a * 'g, 'a) FOAS

typecon (type) ENV =
(unit) ENVnil
| {"g,"a}. ("a * "g) ENVcons of 'a * ('g) ENV

(* "fix x => e’ is the fixed point of "fn x => e’ *)
fun comp (FOASlift v) = (fn env => v)
| comp (FOASone) = (fn (ENVcons (v, _)) => v)
| comp (FOASshi e) = let
val ¢ = comp e
in fn (ENVcons (_, env)) => c env end
comp (FOASlam e) = let
val ¢ = comp e
in fn env => fn v => ¢ (ENVcons (v, env)) end
comp (FOASapp (el, e2)) = let
val cl = comp el
val c2 = comp e2
in fn env => (cl env) (c2 env) end
comp (FOASfix e) = let
val ¢ = comp e
in fn env => fix v => ¢ (ENVcons (v, env) end

Combining Theorem 2.5 and Theorem 2.6, we clearly have that withtype {’g,’a}. (’g,’a) FOAS -> (’g ENV -> ’a)

the evaluation of a well-typed closed express@im Acqqe €ither

reaches a value or continues forever. In particular, this indicates thatfun run e = (comp e) (ENVnil)

the problem of free variable evaluation can never ocCiijae

2.3 Meta-Programming with Acgge

It is already possible to do meta-programming Withige For in-
stance, we can first form an external language.pLby extending
ML with code constructorsL{ft, One Shi App, Lam Fix) and the

withtype {’a}. (unit, ’"a) FOAS -> 'a

Figure 5. Implementing code constructors andun

(int)list — (int :: €,int), that is,auxtakes an integer list and returns

special functiorrun, and then employ a type inference algorithm Some code of typént in which the first and only free variable has
(e.g., one based on the one described in [4]) to elaborate programdype int._Similarly, thewithtype clause forgenEvalPolymeans

in ML ¢oge into programs, or more precisely typing derivations of
programs, iMgode

As an example, we show that the functigenEvalPolyin Section 1
can be implemented as follows, where we usefor empty type
environmeng and<; > for the type constructof, -).

val plus = fn x: int => fn y: int => x + y
val mult = fn x: int => fn y: int => x * y
fun genEvalPoly (p) =

let
fun aux (p) =
if null (p) then Lift (0)
else App (App (Lift plus, Lift (hd p)),
App (App (Lift mult, One),
aux (tl p)))
withtype int list -> <int :: []; int>
in
Lam (aux p)
end
withtype int list -> <[]; int -> int>

Thewithtype clause following the definition of the functi@uxis
a type annotation indicating thatixexpects to be assigned the type

thatgenEvalPolytakes an integer list and returns some closed code
of typeint — int.

Given the obvious meaning oill, hd andtl, it should be straight-
forward to relate the ML-like concrete syntax used in the above
program to the syntax of (properly extendedyqe Evidently, this
kind of programming style is at least unwieldy if not impractical.
To some extent, this is just like writing meta-programs in Scheme
without using the backquote/comma notation. Therefore, we are
naturally led to provide some syntactic support to facilitate meta-
programming.

2.4  Embedding)cogeinto Azgy,

Before presenting syntactic support for meta-programming, we
show a direct embedding @ogein A2 gy, Whered, gy is an inter-

nal language that essentially extends the second order polymorphic
A-calculus with guarded recursive (g.r.) datatype constructors [35].
This simple and interesting embedding, which the reader can skip
without affecting the understanding of the rest of the paper, indi-
cates that the code constructors\igyqe can be readily interpreted
through g.r. datatypes.



In Figure 5, we use some concrete syntax of Jd to de-
clare a binary g.r. datatype constructar)FOAS where ML g,
[35] is an external language ok, The code construc-

tors Lift,One Shi App Lam Fix have their counterpartBOASIift,
FOAone FOAshi FOAapp FOASIam FOAS(ixin Az ..

Typing rules A;T I—kg e:t

AFIT 0K T(XF@0) =1
AT HI Xt

(ty-var-0)

We use atype inp g, for representing a type environmenigyge

the unit typel represents the empty type environmentand the
type constructor, which is for constructing product types, rep-
resents the type environment constructor ::; the type constructor
(+,-)FOASrepresents-,-). Formally, we define a translatign| as
follows, which translates type environments and typeijaeinto
types inAz g

MRS TR TOF@K+1) =T

G — (ty-var-1)
AT R Xt

3(c) =VDo.(T1,...,Tn) =T Akkg I [oK]

AFO:ho A3rh<ga (T[©] fori=1,...,n

G (ty-cst)
-1 AT c(ey,... en) 1 T[O)]
[t:G] = [1+[G| ;
ay = oy AT, Xx@k: 11, e:1p
= (ty-lam)
P fra) = 12l A'r%glamxe'r —T
vﬂG,rH = 9E| ‘TDFOAS ’ K .e:T1 2
KT = Ais
. \ay | .ayl-\ AT'—EelZTlHTz A;Fl—kgez:rl
The functionrun is implemented in Figure 5. We usesathtype (ty-app)

AT l—kg ei(e) 12
A;F,f@k:ﬂ—kge:t

clause for introducing a type annotation. The type annotation
for run indicates thatrun is expected to be assigned the type
Va.(1,a)FOAS— a, which corresponds to the typer.(€,0) — o

in Acoge However, it needs to be pointed out that this implementa-
tion of run cannot support run-time code generation, for which we
need a (primitive) function that can perform compilation at run-time
and then upload the code generated from the compilation.

With this embedding okcogein A2 gy, We are able to construct pro-
grams for performing analysis on typeful code representation. For
instance, the functiooompdefined in Figure 5 is such an example.

3 The Language\

code

We extendAcoge 1O )\jode with some meta-programming syntax

adopted from Scheme and MetaML.

expressions e = ...|'(e)| (e)

Loosely speaking, the notatiof-} corresponds to the backquote
notation in Scheme (or the notati¢n in MetaML), and we use(g)

as the code representation ®10n the other hand(-) corresponds
to the comma notation in Scheme (or the notatighifh MetaML),
and we use(e) for splicing the code into some context. We refer
‘(-) and 7-) as meta-programming syntax.

The expression variable contdxis now defined as follows,
exp.var.ctx. I == 0|l xf@k:1t

wherexf @k stands for variables at levkel> 0 and we use the name
staged variabldor xf @k. Intuitively, an expressioe in the empty
evaluation context is said to be at level O; if an occurrence iaf
ep is at levelk, then the occurrence &fin ‘(gp) is at levelk+ 1; if
an occurrence cdin g is at levelk+ 1, then the occurrence efin
“(ep) is at levelk; if an occurrence ofam x.e; orfix f.eq is at level
k, thenx or f is bound at levek. A declared staged variabkt @k

in " simply indicates thatf is to be bound at leveX.

3.1 Static Semantics

o (ty-fix)
AT fix fert
GG .
AT '_k+1 et

(ty-encode)
AT H “(€): (G(K+1;T),T)
AT H e (G(k+1;7),T)
AT }—E:le “(e):1
Aoy K THSv:T AFYT oK
AT FOA(v) 1 vay kT
AT e:vay: k1 AFTG:K

A;T FSAS(e) s 1oy 1G]

(ty-decode)

(ty-iLam)

(ty-eLam)

Figure 6. The typing rules for A\

code

1. AFT(xf) : typefor eachxf € dom(I), and
2. dom(G) = pos,, and
3. A+ G(n): envfor eachn € dom(G).
In addition, we introduce the following definitions.

e GivenG, k> 0 andrl', we defineG(k; ") as follows.

Gko = G ;
Gkrx@n:1) = t1:6KkTl) ifn=k;
Gk, x@n:1) = G(kTI) if n#£Kk.

e Giveng, I andt, we defineG(0;I";t) =t and

Gkt =Gk-1T;(GkT),1))

for k € dom(G), whereG = G(k). We write G(I';T) for
G(k;T;71) if dom(G) = pos.
e Given G andG such thadom(G) = pos,, we usegG + G for

the mappingg: such thadom(g1) = posc, 1. G1(n) = G(n)
for eachn € pos andGi(k+1) =G.

For each natural numbg&rletpos, be the sef1,... .k}, or formally
{n|0< n<k}. We useg for finite mappings from positive integers
to type environments such that the domaingjodre always equal
to pos;, for somek. In particular, we us@ for the mappingg such

thatdom(G) = posy. We writeA I—kg I [ok] to mean that



We useA; T Fkg e 1 for a typing judgment it . | where we re-

code
quireA D—E I [ok]. Intuitively, G (k) stands for the initial type envi-

ronment for code at leved. We present the typing rules frhrjode
in Figure 6. Note that polymorphic code is only allowed to occur at
level 0.

3.2 Translation from AT

code IntO Acode

We introduce some notations needed in the following presentation.

Forn > 0, we useAl (e) for Ai(...(Ai(e))...), where there are

n occurrences of\', and we use\E(e) similarly. Also, we now

use xfs for a sequence of staged variables, thatxis,is of the

form xfy @Ky, . . ., xfn@kn. For eachk > 0, we definevar (xfs xf)

as follows under the assumption thet@k occurs inxfs for

Xfs = (xfey, XF1 @kq ), vark(xfS XF) is
)

/\‘EH(On.q( o
A&y 2(Shio) (vari(xfsy; xf))

varg (xfs;; xf)

if ky = k andxf, = xf;
if ky = k andxfy # xf;
if ky # k

In Figure 7, we define a translatidgrans(+;-) for eachk > 0 that

translates expressions hﬁode into those iNAggge We first de-

fine some functions that are needed in the definitiotranfs(-;-).

syntax and then assign it the dynamic semantics of its translation
in Acode In other words, we may just treat meta-programming
syntax as mere syntactic sugar. This is precisely the significance of
Theorem 3.2.

We conclude this section with an example to show how the type sys-
tem of}\jodecan prevent free variable evaluation. Let us recall the
example:<fn x => " (run <x>)> in MetaML, whose evaluation
leads to free variable evaluation.)l@ode, the example corresponds
to e = ‘(lam x.”(run(*(x)))). Clearly, trans(e) = trang(0;e) =
Lam(run(One)). Note that the type of the expressi@ne must
equal(t :: G,T1) for someG andt butrun is only allowed to be ap-
plied to an expression whose type(&st) for somet. Therefore,
trans(e) is ill-typed. By Theorem 3.2¢ is also ill-typed inA/, 4o
and thus should be rejected.

3.3 Some Remarks

We mention a few subtle issues so as to facilitate the understanding

+
of )‘codef

These functions basically generalize the code constructors we havegound Variables at Stagek > 0 At levelk for somek > 0, a bound

Givene, ey, ..., en, we writeLift"(e) for Lift(... (Lift(e))...), where
there aren occurrences otLift; and App'(e)(e1)...(en) for e if
n=0, or for

App(ApP'(€) .. (en-1), €n)
if n> 0; andApi.(e)(e1) ... (en) for eif n=0, or for

AR +2(APR) (AP (€) .. (en-1)) (en)
if n> 0. Given type environmentSy, ..., Gy and typet, we write
(G1,...,Gn; 1) for (Gq,(...,(Gn,T)...)). With this notation, we
have G(T';1) = (G1(1;T),...,Ck(k,I);T), whereG = 0+ Gy +
..+ Gk

A crucial property oftrans(-;-) is captured by the following
lemma, which consists of the main technical contribution of the
paper.

LEMMA 3.1. Assume thaf\;[" }_kg e: 1 is derivable in)\cﬁ)de and
I is of the formxfy@kK; : Tq,...,Xfh@kKn : Tn. ThenA; (Mo F
trang(xf, @Ky, . .., Xfn@kn; €) : G(I; 1) is derivable iM\goqe Where
(Mo is defined as follows:

0o = 0
(Frx@0:1) = (MNo,x:1
(Mx@k+1):1)0 = (Mo

PROOF The proof follows from structural induction on the typing
derivation ofA; }—E e:1. O

Given an expressioin A/, we writetrans(e) for trans(0; €) (if

it is well-defined) and call it the translation ef

THEOREM 3.2. Assume thad; 0+ e: 1 is derivable. The; 0 -
trans(e) : T is derivable.

PrROOF This immediately follows from Lemma 3.1.[]

The programmer can now construct a meta-programh jg,

variable merely represents a deBruijn index and a binding may van-
ish or occur “unexpectedly”. For instance, &be the expression
‘(lam x.”(f ‘x)) and € = trang(e) = Lam(f(Ong)).

e Let f be the identity function. Thed evaluates th.am(One),
which represents the codtem x.x.

o Let f be the shift functiodam x.Shi(x). Then€' evaluates to
Lam(ShiOne)), which represents the codem x.y for some
free variabley that is distinct fronx; there is no binding be-
tweenLamandOnein €.

e Let f be the lift functionlam x.Lift(x). Then€ evaluates to
Lam(Lift(One)) and run(€¢) evaluates tdam x.One (not to
lam x.Lift(x)); there is no “expected” binding betwe&am
andOnein €. Letey be the expressiomun(run(€/)(1)). Then
gp is rejected as the expressinm(€)(1), which evaluates to

One cannot be assigned a type of the fofer).*

Cross-Stage Persistencen meta-programming, a situation often
arises where a value defined at an early stage needs to be used at
a later stage. For instance, in the expressigam x.x+ x), the
function +, which is defined at stage O, is used at stage 1. This
is called cross-stage persistence (CSP) [32]. As is indicated in
the typing ruleqty-var-0) and(ty-cst), CSP for variables at stage

0 and constants is implicit mgode However, for variables in-

troduced at stagk > 0, CSP needs to be explicit. For instance,

‘(lam x.‘ (lam y.y(x))) is ill-typed inA/, 4, as the variableis intro-
duced at stage 1 but used at stage 2. To make it typable, the pro-
grammer needs to insert % in frontxf (lam x. (lam y.y(%x))),
where % is a shorthand fokift, that is, %e) represents(Lift(e))

for any expressioe. Note thatLift can also be defined as ‘%, that

is, Lift(e) can be treated ag%e) for any expressiom.

4In vH [21], ey cannot be typed, either. Howeveg can be
typed in the current implementation of MetaML [29] and MetaO-
Caml [30]; in the formery evaluates to 1 (which we suspect may be
caused by an implementation error) but in the latter the evaluation

that may (and probably should) make use of meta-programming of ey raises a run-time exception caused by free variable evaluation.



Lift,
Lift,

Lam,
Lam
Lamyi1

App,
App
APfhi1
Fixn
FiX]_
FiXn 1
Ong
Ong
Onéy+1

Shi,
Ship
Shhy1

trans ;)

—h

transy(xfs xf)
transp(xfs c(ey, ..., en))
trangp(xfs lam x.e)
trang(xfs ey (€2))
trans(xfs fix f.e)
transy(Xfs A'(e))
trans(xfs A%(e))
trang(xfs * (e))

trans;(-;-)
trans (xfs xf)
trang (xfs xf)
trans; (xfs c(ey, . .., €n))
transl(xfs lam x. e
trans; (xfs ey (€2))
trans; (xfs fix f.e)
trang (xfs‘ (e))
trans; (xfs"(e))

transg(+;-) fork > 1
trang,(xfs
trans,(xfs xf)

transc(xfs c(ey, ..., en))

transk(xfs Iam X.€)
)
)
)

@

trang(xfs ey (e2)

trang (xfs fix f.e
trang(xfs ‘()
transc(xfs "(e)

Vy1...VypVoLa — (yi,...
n+l(Iam x.Lift"(x))

WY1. .. VYn Voo Yaz.(y1, . ..
Ny(lam x.Lam(x))

,¥n; O)

»¥n—1,01 I Yn; O2) —

(Y1,---,Yn;ag — 02)

n+3(Iam X App(Lift(A n+2(Larrh)),x))

WY1 .. VYn Voo Vag. (v, . ..
Ay (lam xg.lam xo. App(x1,X2))

n+3(lam xa.1am Xz App(APP(LIft (AT, 5 (APIh)), X1), X2
y—

n+2(Iam X.App(Lift(A n+1(Fixn)),x))

WY1 . YR VOL (Y,
N, (lam x.Fix(x))

> Yn—1,0 2y A

V_V]_.. .VVn.VC1.<y17 covsYn—1,0 yn;G>
AL (One)

N H(LIf(A, 4 (Oney))
WY1. .. VYn VO Y2 (Y1, . ., Yni O2) —

N5(lam x.Shi(x))
n+3(App(Llft( n2(Shh)),X))

xf if xf@0 occurs irxfs

c(trang(xfs ey), ..., trang(xfs e,))

lam x.transy(xfs x@0;e)
trang(xfs ey) (transp(xfs e1))
fix f.trang(xfs f@0;e)
Al(trang(xfs €))
Ne(trang(xfs €))

trans; (xfs e)

Lift(xf)  if xf@0 occurs irxfs
vary (xfs xf)
App'(Lift(lamxy ...
Lam(trans; (xfs x@1,e)
App(trans (xfs e1), trans (xfs e2))
Fix(trans; (xfs f@1;e))

trang (xfs €)

transg(xfs €)

Lift*(xf)

vary(xfs xf)
Apdl(Lift(lamxq ...
Nj o (Lamy) (transc (xfs x@k; e)

if xf@O0 occurs irxfs

Nei2(ApR) (transc(xfs ey)) (trang (xfs

g 11 (Fixio) (trans(xfs, f @k; )
transc, 1(xfs €)
trang_1(xfs €)

Figure 7. The definition of trans(+;
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if xf@k occurs inxfs
lamXn.c(Xq, ..., Xn

,¥Yni 01 — 02) —

if xf@1 occurs irxfs

lamxn.C(Xq,...,%n)))(trans (xfs 1)) . ..

sYniO1) — (Y1,

)

Yn; 00— )

v,

<y17-'-

(Y1,---,¥n—1,01 3 Yn; O2)

)))(trangc(xfs e1))...

))

yfork>0

,¥n; O2)

(trans (xfs en))

(trans(X75 en))



4 Meta-Programming with Al 4 end)
withtype {’g}. int -> <’g; int -> int>

We now need an external language . for the programmerto  \ve use the syntax(fun £ (n) => ...) for
construct meta-programs and then a process to translate such pro- o ,
grams into typing derivations in (properly extendeq),, We (fix £ => (fnn => ...))",
present one possible design of ¥}, as follows, whereb is for which translates into something of the foffix(Lam(...)). This
base types such &ol, int, etc. shows an interesting use of recursion at level 1. Also, we point out
that polymorphic recursion is required in this example.
types T = blalt—=1|(GT)
Eype en;‘/. N i y\§|r::G Example 3 We contrast an unstaged implementation of inner
ype schemes ¢ = T|va.0 . product {nnerProd with a staged implementation of inner prod-
expressions e = x|f|c(e,....en)]|if(e1,e,€3)] uct (geninnerProdl in Figure 8. Given a natural number,
lam x.e|lamx: T.e|ey(ey) | geninnerProdn) returns the code for some functidn; given an
fix f.e[fix flag,...,an] : T.€] integer vecton; of lengthn, f; returns the code for some func-
letx=epineyend| (e:1) tion fp; given an integer vector, of lengthn, f, returns the inner
‘(e)]"(e) product ofv; andv,. For instance, ih = 2, thenfy is basically

equivalent to the function defined below;

The only unfamiliar syntax ifix f[ai,...,0n] : T.e, which we use
to support polymorphic recursion; this expression is expected to be fn vl => *(fn v2 =>
assigned the type scherae=Vay ...Van.T. 0 + "(Lift (sub (vl, 0))) * sub (v2, 0)

+ "(Lift (sub (vl, 1))) * sub (v2, 1))
We have implemented a type inference algorithm based on the. . . .
one in [4] tr?at supports tl)wlg usual Iet-polygmorphism. Like in If V1[0 = 6 andvy[1] = 23, thenf; is basically equivalent to the
Haskell [22], if the type of a recursive function is given, then poly- function defined below.

morphic recursion is allowed in the definition of the function. fnv2 => 0 4 6 * sub (v2, 0) + 23 * sub (v2, 1)

We are now ready to present some examples of meta-programs inNotice that this example involves expressions at level 2 and the use
ML loge of a CSP operator %.

Example 1 The previously defined functiogenEvalPolycan now 5 Extensions
be implemented as follows, which makes no explicit use of code

constructors. Itis straightforward to extenlioqe(and subsequenthy, ) to sup-
port additional language features such as conditionals, pairs, refer-
ences, etc. For instance, in order to support conditional expressions
of the formif(e;,ep,e3), we introduce a code constructiirand

assign it the following type;

fun genEvalPoly (p) =
let
fun aux p x =
if null (p) then Lift (0)

else ‘(hdp + “x * "(aux (t1p) x)) wyva. (y,bool) — () — (v,) — (v,
withtype ) )
{"g}. int list -> <’'g; int> -> <’g; int> we then definéf,, as we have done for the previous code construc-
in tors in Figure 7, and extend the definitiontafns,(-; -) properly for
“(fn x => "(aux p 'x)) k>0.
end
withtype {’g}. int list -> <’g; int -> int> It is even easier to extenkl,qge With pairs and references. For in-

) ] ) ) stance, in order to support references, all we need to assume is
Note that the type annotations, which can be automatically inferred, a type constructot-)ref and the following functions of the given
are presented solely for making the program easier to understand. types, wherd stands for the unit type.

ref : Vo.o— (a)ref
deref : Va.(o)ref—a
update : Voa.(o)ref—a—1

Example 2 The following program implements the Ackermann
function.

fun ack m n =
if m=0 thenn + 1
else if n = 0 then ack (m-1) 1
else ack (m-1) (ack m (n-1))

withtype int -> int -> int Lam(Lam(App(App(Lift(updatg, One),

We can now define a functiagenAckas follows such that the func- App(Lift(deref, ShiOne)))))

tion returns the code for computiragk'm) when applied to agiven  In [1], it is argued that a program corresponding to the following
integerm. one would cause the problem of free variable evaluation to occur in
MetaML [33] asr stores some open code when it is dereferenced.

It is standard to assignh dynamic semanticeetfpderefandupdate
and we omit the details. As an example, the following expression
‘(lam x.lam y.updatdy)(dere{x))) is translated into

fun genAck m =

if m = 0 then “(fn n => n+l) let val r = ref ‘1
else val £ = “(fn x => " (r := “(x+1l); ‘2)
‘(fun £ (n) => in run (!r) end
let
val £’ = " (genAck (m-1)) 5To avoid polymorphic recursion, we need to change
in genAck (m-1) into Shi (Shi (genAck (m-1))) in the implementa-

if n =0 then f/ 1 else £’ (f (n-1)) tion.



fun innerProd n = (* unstaged implementation of inner product *)

let
fun aux 1 vl v2 sum =
if 1 < n then aux (i+l) vl v2 (sum + sub (vl, i) * sub (v2, 1)) else sum
withtype int -> int -> int array -> int array -> int
in
fn vl => fn v2 => aux 0 vl v2 0
end

withtype int -> int array -> int array -> int

fun genInnerProd n = (* staged implementation of inner product *)
let
fun aux i vl v2 sum =
if 1 < n then
aux (i+1) vl v2 ‘Y (""sum + %(sub ("vl, 1)) * sub (""v2, 1))
else sum
withtype {’gl,’g2}. int -> <’gl; int array> ->
<'gl,’g2; int array> -> <’gl,’g2; int> -> <’gl,’g2; int>
in
‘(fn vl => ‘(fn v2 =>
end
withtype {’qgl,’g2}. int -> <’gl; int array -> <’'g2; int array -> int> >

““laux 1 ‘vl YWw2 0)))

Figure 8. A meta-programming example: inner product

This, however, cannot occur kﬁode as the above program is ill-  is now often called staged computation, is introduced in [12] and
typed: ifr is assigned the typgle,int))ref, then it cannot be used  later expanded into multi-level staged computation [15, 14]. Most
to store open code; if is assigned a typé(G, int))ref for some of the work along this line attempts to stage programs automati-
nonemptyG, then the code stored in it cannot be run. cally (e.g., by performing binding-time analysis) and is done in an

untyped setting.

With value restriction, it is also straightforward to support let-

polymorphism in code: we can simply trelat x = vin eend as In [7], alambda-calculus™ based on the intuitionistic modal logic

syntactic sugar fog[x — Vv]. S4 is presented for studying staged computation in a typed set-

ting. Given a typéA, a type constructol , which corresponds to a

What seems difficult is to treat pattern matching in code. One ap- modality operator in the logic S4, can be appliedtin form a type

proach is to translate general pattern matching into the following A for (closed) code of typ&. With this feature, it becomes pos-

form of fixed pattern matching for sum types, sible to verify whether a program with explicit staging annotations

finl . is indeed staged correctly. However, only closed code is allowed to
casegp of inl(xq) = &, | inr(xz) = & be constructed iAH , and this can be a rigid restriction in practice.

and then introduce three code constructats Inr and CaseOfof For instance, the usual power function, which is defined below,

the following types,

fun power n x = (* it returns the nth power of x *)
Vywavao.(y,01) — (y,01+02) if n = 0 then 1 else x * power (n-1) x
YWaavoo. (y, az) — (Y, 01 +02)
YWaiVaovas. can be staged ihgodeas follows in two different manners.

(Va1 +02) — (ayy,0a3) — (a2 2y, az) — (Y,03)
fun powerl n =

respectively. The rest becomes straightforward and we omit the if n = 0 then ‘(fn x => 1)
details. else “(fn x => x * " (powerl (n-1)) x)

An alternative is to introduce a&CaseOf code constructor for every fun power2 n = let

declared datatype, and a code constructor for each value constructor fun aux i x =

associated with the datatype. This approach is more flexible than if 1 = 0 then ‘1 else ‘("x * "(aux (i-1) x))
the previous one in practice but still has difficulty supporting nested in ‘(fn x => "(aux n ‘x)) end

patterns. We plan to introduce first-class patterns to better address

the issue in the future. However, the second versiopgwer? does not have a counterpart
in \H as it involves the use of open code: there is a free variable in
6 Related Work and Conclusion the code produced bfaux n °x)

An approach to addressing the limitation is given in [6], where a
type constructo() is introduced, which corresponds to the modal-
ity in discrete temporal logic for propositions that are true at the
subsequent time moment. Given a typehe typeOA is for code,

which may contain free variables, of tydeé® This approach is es-

Meta-programming, which can offer a uniform and high-level view
of the techniques for program generation, partial evaluation and
run-time code generation, has been studied extensively in the lit-
erature.

An early reference to partial evaluation can be found in [13], where 5 - ) ) )
the three Futamura projections are presented for generating compil-  ®Note that the functiomun is not present in\C for otherwise
ers from interpreters. The notion génerating extensionsvhich the problem of free variable evaluation would occur.



sentially used in the development of MetaML [33], an extension There were certainly earlier attempts in forming typeful code rep-
of ML that supports typed meta-programming by allowing the pro- resentation. For instance, in a dependent type system such as LF, it
grammer to manually stage programs with explicit staging annota- is fairly straightforward to form a typexp(t) in themeta-language
tions. On one hand, when compared to untyped meta-programmingfor representing closed expressions of typethe objectlanguage.
in Scheme, the type system of MetaML offers an effective approach Unfortunately, such typeful code representation seems unsuitable
to capturing (pervasive) staging errors that occur during the con- for meta-programming as the strict distinction between the meta-
struction of meta-programs. On the other hand, when compared tolanguage and the object language makes it impossible for expres-
partial evaluation that performs automatic staging (e.qg., in Similix), sions in the meta-language to be handled in the object language. In
the explicit staging annotations in MetaML offer the programmer particular, note that the code construdtft is no longer definable
more flexibility and expressiveness. with this approach. An early approach to typeful code representa-
tion can be found in [25], where an inductively defined datatype is
However, as was first pointed out by Rowan Davies, the original formed to support typeful representation for terms in the second-
type system of MetaML contained a defect caused by free variable order polymorphick-calculus. This representation is higher-order
evaluation (as the functiorun is available in MetaML) and there  and supports both reflection (i.e., to map the representation of an
have since been a number of attempts to fix the defect. For instancegxpression to the expression itself) and reification (i.e., to map an
in [20], types for (potentially) open code are refined and it then expression to the representation of the expression). However, it
becomes possible to form types for closed code only. In general, ahandles reification for complex values such as functions in a man-
value can be assigned a type for closed code only if the value doesner that seems too limited to support (practical) meta-programming.
not depend on any free program variables. This approach is furtherIn [5], an approach is presented that implements (a form of) type-
extended [1] to handle references. Though sound, this approachful h.o.a.s. in Haskell-like languages to represent simply typed
also rules out code that is safe to run but does contain free programterms. With this approach, it is shown that an implementation of

variables. We now use an example to illustrate this point.el. e the normalizing function for simply typexiterms preserves types.
the following expressions ik, However, the limitation of the approach is also severe: It does not
code support functions that take typeful h.o.a.s. as input (e.g., a function

lam f.* (lam x.”(run(f(*x)))) like run in Acoge)-
In this paper, we present a novel approach to typed meta-

ande; = trang(e;) = lam f.Lam(run(f(One))). Clearly,e; can be programming that makes use of a form of first-order typeful code

assigned a type of the following forfh: representation in which program variables are replaced with de-
3 B Bruijn indices. We form a languagk.qqe in which expressions
(112 G1,11) — (&, (121 G2,13))) — (G2, T2 — T3) representing code can be constructed through code constructors and

. . then executed through a special functiom. AlthoughAcgge suf-
However, e, cannot be assigned a type in [20] or [1] as the type fices to establish a theoretical foundation for meta-programming,
tSﬁ/.St‘?mS H.‘err]? cannto_t a;s@;(ix) "f‘ c_Itosed ?ﬁdle typeo.l_ T?OUQh it lacks proper syntax to support practical meta-programming. We
1S 1 a nighty contrived example, It nonethetess Inaicates Some ,jdress the issue by extendihgyge into A;fode with some meta-

inadequacy in the notion of closed types captured by these tyloeprogramming syntax adopted from Scheme and MetaML; we first

systems. ; -
form rules to directly type programs}firodeand then define a trans-
In [31], there is another type system that aims at assigning more lation from )\gode iNto Acoge for assigning dynamic semantics to

accurate types to meta-programs in MetaML. In the type system, y+  \ne also present examples in support of meta-programmin
a notion of environment classifiers is introduced. Generally speak- * code P P PP prog g

ing, environment classifiers are used to explicitly name the stagesW'th Aode
of computation, and code is considered to be closed with respect to o
an environment classifier if a can be abstracted. This approach Furthermore, we feel that the concrete code representation in

is similar (at least in spirit) to the typing ofinSTin Haskell [16]. Acode Can be of great use in facilitating the understanding of
To some extent, an environment classifier resembles a type envi-meta-programming. For instance, the considerably subtle differ-
ronment variabley in A/ 4. and the type(a)(t)® for code of typet ence betweer{%(e)) and ((%e)) [31] can be readily explained

that is closed with respect to an environmentelates to the type N Acode the former and the latter are translated ihiti(¢/) and
WYL(y,t) in AL App(Lift(lift),€), respectively, where is the translatiortrans(e)

’ code of e and lift is lam x.Lift(x); run(Lift(¢')) reduces to€ and
run(App(Lift(lift),€')) reduces td_ift(V'), whereV is the value of

Another approach to addressing the limitation\6¥ is presented run(e') (assuming’ represents closed code); so the difference be-

I)\nézéﬂ' Insltealld Oé r_eflr;rig tr;e nOtIt?]n of E_pote?tl.lally (c)jpenge(;\i%de n tween(%(e)) and ((%e)) is clear: the former mearssis not exe-
 the calculug™ in [21] relaxes the notion of closed co cuted until the second stage while the latter, which requtesbe

by extending\™ with a notion ofnamesthat is inspired by some  ¢lgsed, indicates thatis executed at the first stage and its value is
developments in Nominal Logic [27] and FreshML [28]. Given an jifted into the second stage.
expression representing some code, the free variables in the code

are represented as certain distinct names; the set of these NamMe$ye also show thateogecan be embedded ind ,,in a straightfor-

which is called thesupportof the expression, is reflected in the ard manner, establishing an intimate link between code construc-

type of the expression. The code represented by an expression ca rs and : : Pt A
; . 7 guarded recursive datatypes. This embedding immediately
be executed only if the support of the expression is empty. Clearly, gives rise to the possibility of constructing programs that perform

the notion of a supportin- corresponds to the notion of a type en- analysis on code.

vironment in\codge The primary difference betwea andAcoge

as we see is that the development of the former is guided, implicitly |n future, we are interested in a more flexible approach to handling
or explicitly, by the notion of higher-order abstract syntax while the pattern matching in code. For this purpose, we seem to be in need
latter is based on a form of first-order abstract syntax. of first-class patterns. Also, we plan to study how names, instead
of deBruijn indices, can be used to form first-order typeful code
"For example, this means, can be applied to the function ~ 'epresentation, and we believe this is an important step towards im-

lam x.Lift(x) (and the application evaluates tam(One)) but not plementing transformations for typed programs in a type-correct
to the functionlam x.x. manner.
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