
Kill-Safe Synchronization Abstractions
“Well, it just so happens that your friend here is only mostly dead.

There’s a big difference between mostly dead and all dead.”
– Miracle Max inThe Princess Bride

DRAFT: March 29, 2003

Matthew Flatt
University of Utah

Robert Bruce Findler
University of Chicago

Abstract

When an individual task can be terminated at any time, cooperat-
ing tasks must communicate carefully. For example, if two tasks
share an object, and if one task is terminated while it manipulates
the object, the object may remain in an inconsistent or frozen state
that incapacitates the other task. To support communication among
terminable tasks, language run-time systems (and operating sys-
tems) provide kill-safe abstractions for inter-task communication.
No kill-safe guarantee is available, however, for abstractions that
are implemented outside the kernel.

In this paper, we show how a run-time system can support new
kill-safe abstractions without requiring modification to the kernel,
and without requiring the kernel to trust any new code. Our design
thus frees the kernel implementor to provide only a modest set of
synchronization primitives in the trusted computing base, and ap-
plications can still communicate using sophisticated abstractions.

1 Introduction

Most modern programming languages offer support for multi-
ple tasks in the form of threads. Support for tasktermination
is less widely implemented and generally less understood, but
no less useful to programmers. The designers of Java, for ex-
ample, understood the need for termination, and they included
Thread.stop andThread.destroy in the language. Flaws in the
specification ofThread.stop forced its withdrawal, however, and
Thread.destroy has never been implemented. Meanwhile, var-
ious extensions of Java have provided termination in a more con-
trolled form [2, 3, 10, 11, 14], and termination of Java tasks is a
driving goal of the new JSR-121 standard [23].

Termination in any language becomes troublesome when tasks
share objects. Two tasks may share a queue, for example, and they
may require that terminating one task does not corrupt or perma-
nently freeze the queue for the other task. Java extensions such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

JSR-121 solve the problem in the same way as conventional operat-
ing systems: they restrict sharing among terminable tasks to objects
that are managed by the run-time kernel. Thus, if one task is ter-
minated while manipulating a kernel-maintained queue, the kernel
delays termination until it can leave the queue in a consistent state
for the other task.

The conventional design places full responsibility on the kernel im-
plementor to manage objects and termination correctly. On the one
hand, when the kernel implementor’s work is complete, application
programmers need not worry about termination when using shared
objects. On the other hand, application programmers are restricted
to the kernel’s abstractions for reliable communication; new com-
munication abstractions require extensions to the kernel.

Our latest version of MzScheme [7] avoids this restriction through
a novel set of primitives for managing tasks. Using the primitives,
a programmer can implement a new kill-safe abstraction without
modifying MzScheme’s kernel. Crucially, the set of cooperating
tasks that share an object need not be defined in advance, and the
cooperating tasks need not trust each other. (They must trust only
the implementation of the shared object.)

The new MzScheme primitives build on the observation that thread
termination is merely indefinite suspension plus garbage collection.
By creating a thread to manage a particular synchronization abstrac-
tion, a programmer can ensure that the abstraction instance is sus-
pended when it might otherwise be killed. In short, when the in-
stance object is “killed” as part of a task termination, it turns out to
be “only mostly dead.” A surviving task that shares the object can
resurrect it. This technique succeeds because MzScheme’s prim-
itives allow a manager thread to preserve its object’s consistency
across suspends and resumes.

MzScheme also builds on the primitives of Concurrent ML [20],
which enable a programmer to construct synchronization abstrac-
tions that have the same first-class status as built-in abstractions.
By starting with Concurrent ML’s primitives, we ensure that our
model covers a large class of abstractions. In general, MzScheme
can express any abstraction that is expressible in Concurrent ML,
and we believe that any such abstraction can be made kill-safe with
small adjustments.

Section 2 describes our model of task management and kill-safe
abstractions. Section 3 presents MzScheme’s task-control mech-
anisms, and Section 4 sketches the implementation of a kill-safe
queue. Section 5 reviews MzScheme’s embedding of Concurrent
ML primitives, mainly for readers who are not familiar with Con-
current ML. Section 6 presents a complete and realistic queue im-

plementation using the Concurrent ML primitives. This full imple-
mentation motivates a remaining detail of our design that is covered
in Section 7. Section 8 compares some of our design choices to
some alternatives. Section 9 summarizes related work.

2 Termination and Cooperation

Conventional OSes govern a realm of intense distrust. Each task
trusts only the kernel, and the kernel trusts no one. To maintain
order, the kernel strictly isolates tasks, as illustrated in Figure 1.
Each task occasionally communicates across the “red line” (drawn
as a thick gray line in the figure) to the kernel task, but a tasks do
not communicate directly to other tasks or cross into another task’s
space (as indicated in the figure by thick black lines). As a result,
a haywire task at worst corrupts its own space (imagine a task in
the figure growing uncontrollably to fill its own space), and the task
is therefore terminated easily. The cost of easy termination is a
restriction on communication. If two tasks need to communicate,
they must use the primitives provided by the kernel (depicted in the
figure by a telecast from the left task to the right task via the kernel
task).

In contrast, the run-time kernel of a safe programming language
presides over a realm that is free from bit-bashing vandals. In the
same way that a task relies on abstract datatypes for internal pro-
tection, the task can rely on abstract datatypes for protection from
other tasks. The kernel therefore allows task boundaries to fade
away, as illustrated in Figure 2. Compared to a conventional OS,
tasks are free to set up new communication abstractions that better
match their needs (as depicted in the figure by a close-range telecast
in a task’s space). However, a haywire task can now bring down the
entire system, not by mangling data structures, but by consuming
too many resources (again, imagine a task growing uncontrollably,
but this time it fills the entire system, squeezing out other tasks).

2.1 The Best of Both Worlds

The architectures in Figure 1 and 2 demonstrate a trade-off between
ease of communication versus ease of termination, but they are
merely the extremes. A variation of the OS-style architecture can
improve communication by enriching the kernel’s set of primitives,
possibly exploiting language safety in the design of the new prim-
itives. Indeed, many language-based systems take this approach,
including Alta [3], SPIN [4], J-Kernel [10], Nemesis [14], Kaf-
feOS [2], and Luna [11]. In each case, however, the system offers a
fixed set of primitives to applications. Inevitably, some set of tasks
would benefit from a new communication abstraction.

A hybrid architecture can avoid the fixed set of primitives, and its
implementation may consist simply of running one system inside
another. By running, say, KaffeOS under Unix, KaffeOS programs
can take advantage of KaffeOS’s primitives, while Unix-level tasks
continue to communicate with Unix primitives. This layering of
kernels, illustrated in Figure 3, effectively allows a programmer to
extend the kernel’s set of communication primitives by implement-
ing a new kernel. Depending on the base, implementing a new ker-
nel may be difficult, but our previous work on MzScheme/MrEd [8]
shows how a language can help. Indeed, the DrScheme program-
ming environment [6] depends on such support from MzScheme,
since DrScheme acts as a kernel to the programs that it executes for
debugging.

Figure 1. Conventional OS (e.g., Unix)

Figure 2. Safe language run-time (e.g., JVM)

Figure 3. Layers (e.g., KaffeOS on Unix)

Figure 4. Kill-safe abstractions (MzScheme)

2.2 Remaining Problem: Discovering Cooperation

The drawback of the kernel-layers approach is that the layers must
be defined in advance, and tasks must be associated with layers in
advance. In practice, two already-running tasks may discover each
other and wish to communicate through an abstraction that is not
provided by their shared kernel.

For example, servlets for two different sessions might discover each
other and wish to share a cache whose implementation is specific
to the servlets. Although the servlet tasks can trust the cache im-
plementation, they cannot trust each other to survive, because the
server might terminate one or the other at any time.

This configuration is illustrated in Figure 4. In the figure, the left
and right tasks do not trust each other, but they trust the small gray

box in the middle (in the same way that they trust the kernel). The
kernel, on the other hand, does not trust the gray box—just as in
the layered model of Figure 3, the outer kernel (e.g., Unix) does not
trust the inner kernel (e.g,. KaffeOS).

The communication pattern suggested by Figure 4 cannot be im-
plemented in existing systems. The problem is that the gray-box
task must either be a sub-task of the left or right task (and therefore
subject to termination along with its parent task), or it must be at
the same level as the two tasks, and therefore no more trustworthy
than either task. This problem cannot be solved by allowing the
two tasks to enter the gray box and execute atomically, since the
two tasks could then collude to starve the rest of the system. For
the same reason, the termination of a task cannot be delayed until it
leaves the gray box.

2.3 Solution in MzScheme

Our solution requires either the left or right task to create the gray-
box task initially as a sub-task. Later, when the other task gains
access to the gray box, it “promotes” the box as its own sub-task.
As a result, the gray-box task becomes more resistant to termination
than either the left or right task alone.

For example, if the left task is terminated, the box task is merely
suspended. When the right task later accesses the box, it resumes
the box task, and safely continues. If both the left and right tasks are
terminated, the box task becomes both suspended and inaccessible,
and therefore effectively terminated. Thus, the system as a whole
can protect itself against malicious (or buggy) collaborations by ter-
minating both collaborators. Meanwhile, communication channels
that are provided by the box protect the left and right tasks from
each other, much as kernel-supplied channels protect tasks from
each other.

This solution builds on our earlier work for layered kernels in
MzScheme. It also relies on primitives in the base kernel for con-
structing boxes; the primitives of Concurrent ML serve that pur-
pose. Finally, our solution relies on new primitives for modifying
the task hierarchy without threatening bystander tasks.

2.4 Application

The new MzScheme solves a problem within the implementation
of DrScheme’s help system. Help pages are written in HTML,
and the help system works by running the PLT web server [9]
plus a browser that is connected to the server. Although the server
and browser could execute as different OS tasks and communicate
through TCP sockets (as web servers and browsers normally do),
production OSes make this architecture surprisingly fragile. There-
fore, DrScheme implements its own browser, and it runs a web
server and a browser directly in its own MzScheme virtual machine.
The two parties communicate through a socket-like abstraction.

The core of the socket-like abstraction abstraction is an asyn-
chronous buffered queue. The MzScheme kernel, however, pro-
vides no such abstraction, and adding an intermediate kernel layer
for the web browser and server would be prohibitively difficult.
Furthermore, both the server and browser take advantage of termi-
nation for internal tasks (e.g., to cancel a browser click), and those
tasks are involved in communication. Such terminations then wreak
havoc with the queue implementation.

In the new MzScheme, small adjustments to the queue implemen-
tation make it kill-safe as well as thread-safe. The help system

now works reliably with no additional changes to DrScheme, the
server, or the browser. At the same time, the kill-safe abstraction
does not (and cannot) compromise task control. In particular, when
testing DrScheme within DrScheme, we can terminate the inner
DrScheme, and it reliably terminates the associated help system,
including any queue-manager threads.

Kill-safe buffered queues are merely the tip of the abstraction ice-
berg, but we use this example in the following sections to illus-
trate essential techniques for kill-safe abstractions. See Reppy’s
book [20] for many other example abstractions that can be made
kill-safe using our technique.

3 Task Control in MzScheme

MzScheme’s support for tasks encompasses threads of execution,
task-specific state, per-task resource control, per-task GUI modal-
ities, and more. Instead of supplying a monolithic “process” con-
struct, however, MzScheme supports the many different facets of
a process through many specific constructs [8]. With respect to
kill-safe abstractions, the only relevant facets are threads of execu-
tion, resource control as it relates to thread termination, and thread-
specific state as it relates to determining the resource controller.

3.1 Threads

Thespawn procedure takes a function of no arguments and calls the
function in a new thread of execution. The thread terminates when
the function returns. Meanwhile,spawn returns a thread descriptor
to its caller.

(define t1 (spawn (lambda () (printf "Hello"))))
(define t2 (spawn (lambda () (printf "Nihao"))))
;; prints “Hello” and “Nihao”, possibly interleaved

3.2 Resource Control

A custodianis a resource controller in MzScheme. Whenever a
thread is created, a network socket is opened, a GUI windows is
created, or any other primitive resource is allocated, it is placed
under the control of thecurrent custodian. A thread can create and
install a new custodian, but the newly created custodian is asub-
custodianthat is controlled by the current custodian.

The only operation on a custodian iscustodian-shutdown-all,
which suspends all threads, closes all sockets, destroys all GUI
windows, etc. that are controlled by the custodian. The shut-down
command also propagates to any controlled sub-custodians. After
a custodian is shut down, it drops references to primitive resources
such as sockets, GUI windows, etc., and the memory for such ob-
jects can be reclaimed by the garbage collector (when they become
otherwise unreachable).1 The custodian itself remains available to
control new objects. It also retains a weak reference to each suspend
thread, in case the thread is later resumed. If a thread is resumed, a
futurecustodian-shutdown-all once again suspends the thread.

The make-custodian procedure creates a new custodian. The
parameterize form with current-custodian sets the current
custodian during the evaluation of an expression. In particular,
parameterize can be used to install a custodian while creating
a new thread, and the new thread is then controlled by the installed
custodian.

1In practice, shutting down a resource removes internal refer-
ences, which frees most of the memory associated with the re-
source.

(define cust (make-custodian))
(parameterize ([current-custodian cust])

(spawn lots-of-work))
(custodian-shutdown-all cust) ; stopslots-of-work

When a thread is created, it inherits the current custodian from its
creating thread. Thus, assuming thatlots-of-work is not closed
over the original custodian,(custodian-shutdown-all cust)
reliably terminates the task that executeslots-of-work—no mat-
ter how many threads that it spawns, sockets that it opens, GUI
windows that it creates, or sub-custodians that it generates.

The current custodian for a particular thread is not necessarily the
same as the thread’s controller. The thread’s controlling custodian
is determined when the thread is spawned, but the current custodian
(for controlling newly allocated resources) can be changed by the
thread at any time throughparameterize.

3.3 Thread Control

The custodian-shutdown-all procedure provides one way to
suspend a thread. MzScheme also providesthread-suspend for
suspending a specific thread.

Suspending a thread stops a computation uncooperatively, but such
heavy-handed termination is not always necessary. For coopera-
tive termination, MzScheme provides thethread-break function,
which takes a thread descriptor and sends the thread a break sig-
nal. This signal is analogous to a Unix process signal, but the break
signal is manifest in the target thread as a asynchronous exception,
much as in Concurrent Haskell [16].

(define cust (make-custodian))
(define t (parameterize ([current-custodian cust])

(spawn lots-of-work)))
(thread-break t) ; possibly interrupts lots-of-work

Asynchronous breaks add only a minor challenge to the implemen-
tation of kill-safe abstractions, and we address this challenge in Sec-
tion 7. For completeness, we offer a few additional details concern-
ing breaks in MzScheme, but the disinterested reader may safely
skip to the next subsection.

Break exceptions can be enabled and disabled by using
parameterize with break-enabled. Breaks are always implic-
itly disabled during exception handling and during the evaluation
of dynamic-wind pre- and post-actions. If a break signal is deliv-
ered to a thread that has disabled breaks, the signal is delayed until
breaks are re-enabled in the thread. A break signal has no effect if
the target thread already has a delayed break.

Unlike Concurrent Haskell’stakeMVar, a blockingsync does not
implicitly enable breaks while it blocks. Such implicit enabling is
unnecessary to encourage interruption whenthread-suspend is
available is a back-up, and in our experience, implicit enabling of
breaks makes a system fragile. A separatesync/enable-breaks
function enables breaks such that either a break execution is raised
or an event is selected, but not both. (Merely wrapping async with
aparameterize to enable breaks does not achieve this exclusive-
or behavior, because the break may occur after an event is selected
but before breaks are re-disabled.)

3.4 Thread Resumption

Given a single thread argument, MzScheme’sthread-resume
function resumes the thread if it is suspended.

(define cust (make-custodian))
(define t (parameterize ([current-custodian cust])

(spawn lots-of-work)))
(custodian-shutdown-all cust) ; stopslots-of-work
(resume-thread t) ; resumeslots-of-work

MzScheme provides no operation for resuming all controlled ob-
jects in a custodian. Indeed, for most kinds of controlled objects, a
shut-down action is terminal. Thus, a thread such ast above may
resume and discover that its resources have been closed. For kill-
safe abstractions, the implication is that an abstraction cannot rely
on controlled resources other than threads.

The thread-resume function accepts an optional second argu-
ment. The second argument, which also must be a thread descriptor,
plays two roles:

• It yokes the first thread to second for resumes, in that the first
thread is resumed whenever the second thread is resumed.

• It potentially “strengthens” the first thread by changing the
thread’s controlling custodian to a more senior custodian. The
more senior custodian is determined by comparing the two
thread’s controlling custodians, and finding the least-senior
common super-custodian.

The overall effect of(thread-resume t t2) is to ensure thatt
is suspended only whent2 is also suspended—assuming thatt is
suspended only indirectly viacustodian-shutdown-all. This
effect holds because an indirect suspension oft will also suspend
t2 , and ift2 is resumed later, so ist .

The two-argumentthread-resume allows two threadst1 and
t2 share an object that embeds a threadt . In that case,
(thread-resume t t1) plus (thread-resume t t2) makes
the embedded threadt act as though it has no controlling custo-
dian, at least as far ast1 andt2 can tell. This combination was the
key to implementing kill-safe versions of the queue abstractions.

4 Sketch for a Kill-Safe Queue

The primitive synchronization abstraction in MzScheme is a CSP-
style synchronous channel [12], which allows two tasks to ren-
dezvous and exchange a single value. This built-in abstraction is
kill-safe, in that the termination of a task on one end of the channel
does not endanger the task on the other end of the channel—though,
obviously, no further communication will take place.

In this section, we consider the implementation of a kill-safe queue
(a.k.a. asynchronous buffered channel). Values sent into the queue
are parceled out one-by-one to receivers. A send to a queue never
blocks, except to synchronize access to the internal list of queued
items. A receive blocks only when the queue is empty, or to syn-
chronize internal access.

(define q (queue))
(queue-send q "Hello")
(queue-send q "Bye")
(queue-recv q) ; ⇒ "Hello"
(queue-recv q) ; ⇒ "Bye"

Figure 5 sketches an implementation of queues. Each queue con-
sists of a channelin-ch for putting items into the queue, a channel
out-ch for getting items out of the queue, and a manager thread
runningserve to pipe items fromin-ch to out-ch .

The implementation is not yet kill-safe. For example, suppose that

;; queue : → α-queue
;; queue-send : α-queue α → void
;; queue-recv : α-queue→ α

;; Declare an opaqueq record; this declaration introduces the
;; private functions make-q , q-in-ch , and q-out-ch
(define-struct q (in-ch out-ch))

(define (queue)
(define in-ch (channel)) ; to acceptsends into queue
(define out-ch (channel)) ; to supply recvs from queue
;; A manager thread loops withserve
(define (serve items)

;; Handle sends andrecvs
....
;; Loop with new queue items:
(serve new-items))

;; Create the manager thread
(spawn (lambda () (serve (list))))
;; Return a queue as an opaqueq record
(make-q in-ch out-ch))

(define (queue-send q v)
;; Sendv to (q-in-ch q)
....)

(define (queue-recv q)
;; Receive from(q-out-ch q)
....)

Figure 5. Implementation sketch for a queue

a threadt1 createsq by calling (queue). Suppose further that
t1 is controlled by custodianc1 , and thatq is made available to a
threadt2 controlled by custodianc2 :

;; t1 , controlled by c1 ;; t2 , controlled by c2
(define q (queue))
(send-to-other q) (define q (get-from-other))
;; suspend threads of c1

;; stuck sinceq suspended byc1
(queue-send q 10)

Sincet1 createsq , the queue’s internal threadt is controlled by
c1 . Suspending all threads ofc1 suspends botht1 andt . As
a result, thesend in t2 gets stuck—and asend into a buffered
queue should never get stuck.

We might attempt to fix the problem with a resume of the queue’s
thread before each queue operation. A simple resume is not enough,
however; between the time thatt2 resumest and the time that it
performs its action on the queue, another thread might re-suspend
all threads ofc1 , thus re-suspendingt .

The solution is(thread-resume t t2), which not only resumes
the queue thread, but also changes the controlling custodian oft to
a super-custodian of bothc1 andc2 . Afterward, a mere suspension
of c1 ’s threads does not suspendt .

Sincet is not accessible outside the queue implementation, it can
be suspended only through its custodian. Furthermore, sincet ’s
custodian is a common ancestor oft1 andt2 , both of those threads
will be suspended as well, and it does not matter thatt is sus-
pended. Indeed,t mustbe suspended, because the suspension may
be intended to terminate the set of taskst1 andt2 .

If the suspension is not intended to terminate the task, and ift2 is

(define-struct q (in-ch out-ch mgr-t))

(define (queue)
....
(define mgr-t (spawn (lambda () (serve (list)))))
;; The q record now refers to the manager thread
(make-q in-ch out-ch mgr-t))

(define (queue-send q v)
(resume-thread (q-mgr-t q) (current-thread))
;; Sendv to (q-in-ch q)
....)

(define (queue-recv q)
(resume-thread (q-mgr-t q) (current-thread))
;; Receive from(q-out-ch q)
....)

Figure 6. A kill-safe queue, revises Figure 5

later resumed, thent is also resumed, due to the chaining installed
by (thread-resume t t2). More generally, by guarding each
queue operation with(thread-resume t (current-thread))
we ensure thatt runs whenever a queue-using thread runs. Figure 6
shows revisions of the queue implementation with these guards,
which make it kill-safe.

This example demonstrates both how kill-safe abstractions are pos-
sible, and how abstractions can be made kill-safe with relative ease.
Nevertheless, it does not demonstrate the full power of MzScheme’s
primitives for defining kill-safe abstractions. For such a demonstra-
tion, we must introduce MzScheme’s embedding of the Concurrent
ML primitives, so that we can build more flexible abstractions.

5 Review of Concurrent ML

This section provides a brief tutorial on MzScheme’s embedding2

of the Concurrent ML [20] primitives that are listed in Figure 7.
The tutorial is intended mainly for readers who are unfamiliar with
Concurrent ML.

The primitives support synchronization among tasks via first-class
events. A few kinds of events are built in, such as events for send-
ing or receiving values through a channel. More importantly, the
primitives enable the construction of entirely new kinds of events
that have the same first-class status as the built-in events.

• sync : α-event→ α

The sync procedure takes aneventand blocks until the event is
ready to supply a value. Some primitives provide a source of events.
For example,thread-done-evt takes a thread descriptor and re-
turns an event that is ready (with a void value) when the thread has
terminated.

;; thread-done-evt : thread → void-event

(define t1 (spawn (lambda () (printf "Hello"))))
(define t2 (spawn (lambda () (printf "Nihao"))))
(sync (thread-done-evt t1)) ; waits until t1 is done
(sync (thread-done-evt t2)) ; waits until t2 is done
(printf "Bye")
;; prints “Hello” and “Nihao” interleaved, then “Bye”

2The functions are defined in the(lib "cml.ss") module.

sync : α-event→ α
channel : → α-channel

channel-recv-evt : α-channel→ α-event
channel-send-evt : α-channel α → void-event
choice-evt : α-event ... α-event→ α-event

wrap-evt : α-event (α → β) → β-event
guard-evt : (→ α-event) → α-event
nack-guard-evt : (void-event→ α-event) → α-event

Figure 7. Concurrent ML primitives in MzScheme

• channel : → α-channel
channel-recv-evt : α-channel→ α-event
channel-send-evt : α-channel α → void-event

The channel procedure takes no arguments and returns a chan-
nel descriptor. A channel’s only purpose is to generate events;
thechannel-recv-evt andchannel-send-evt procedures cre-
ate events for receiving values from the channel and sending values
into the channel, respectively. The result of a receive event is a
value sent through the channel, and the result of a send event is
void. A send event is created with a specific value to put into the
channel, and the event is ready only when a receive event can ac-
cept the value simultaneously. Similarly, a receive event is ready
only when a send event can provide a value simultaneously.(define c (channel))
(spawn (lambda () (sync (channel-send-evt c "Hello"))))
(sync (channel-recv-evt c)) ; ⇒ "Hello"

Multiple threads can attempt to send or receive through a particu-
lar channel concurrently. In that case, the system selects threads
arbitrarily but fairly to form a send–receive pair.

(define c (channel))
(spawn (lambda () (sync (channel-send-evt c "Hello"))))
(spawn (lambda () (sync (channel-send-evt c "Nihao"))))
(sync (channel-recv-evt c)) ; ⇒ "Hello" or "Nihao"
(sync (channel-recv-evt c)) ; ⇒ "Nihao" or "Hello"

• choice-evt : α-event ... α-event→ α-event

Thechoice-evt procedure takes any number of events and com-
poses them into a single event. The composite event is ready when
one of the composed events is ready. If multiple composed events
are ready, one is chosen arbitrarily but fairly, and the value pro-
duced by the composite event is the value produced by the chosen
event.

(define c1 (channel))
(define c2 (channel))
(spawn (lambda () (sync (channel-send-evt c1 "Hello"))))
(spawn (lambda () (sync (channel-send-evt c2 "Nihao"))))
(define cc (choice-evt (channel-recv-evt c1)

(channel-recv-evt c2)))
(sync cc) ; ⇒ "Hello" or "Nihao"
(sync cc) ; ⇒ "Nihao" or "Hello"

In the above example, even if both sending threads are ready when
the main thread first callssync, only one receive event incc is
chosen, and so it is matched with only one sending thread. The
other sending thread remains blocked until the second(sync cc).

• wrap-evt : α-event (α → β) → β-event

Thewrap-evt function takes an event and a transformer procedure
of one argument, and it produces a new event. The new event is

ready when the given event is ready, and its value is the result of the
transformer procedure applied to the original event’s value.

(define c1 (channel))
(define c2 (channel))
(spawn (lambda () (sync (channel-send-evt c1 "Hello"))))
(spawn (lambda () (sync (channel-send-evt c2 "Nihao"))))
(sync (choice-evt

(wrap-evt (channel-recv-evt c1)
(lambda (x) (list x "from 1")))

(wrap-evt (channel-recv-evt c2)
(lambda (x) (list x "from 2")))))

;; ⇒ (list "Hello" "from 1") or (list "Nihao" "from 2")

• guard-evt : (→ α-event) → α-event

The guard-evt function is the dual ofwrap-evt. Whereas
wrap-evt supports post-processing on the result of an event,
guard-evt supports pre-processing to generate an event for syn-
chronization. For example, assume thatcurrent-time produces
the current time, and thattime-evt produces an event that is ready
at a given absolute time. Then,guard-evt can be used to construct
a timeout event.

;; current-time : → num
;; time-evt : num→ event

(define one-sec-timeout
(guard-evt (lambda ()

(time-evt (+ 1 (current-time))))))
(sync one-sec-timeout) ; ⇒ void, one second later
(sync one-sec-timeout) ; ⇒ void, another second later

The result fromguard-evt function might be best described as
“event generator” instead of an immediate event, but this generator
can be used anywhere than an event can be used. Event generation
is important forone-sec-timeout , which must construct an alarm
time based on the time thatone-sec-timeout is used, not when
one-sec-timeout is created.

• nack-guard-evt : (void-event→ α-event) → α-event

The nack-guard-evt function generalizesguard-evt. For
nack-guard-evt, the given guard procedure must accept a sin-
gle argument. The argument is a “Negative ACKnowledgement”
event that becomes ready if the guard-generated event is not chosen
by sync.

(define c (channel))
(spawn (lambda () (sync (channel-send-evt c "Hello"))))
(sync (choice-evt

(nack-guard-evt
(lambda (nack)

;; Start a thread to watch NACK
(spawn (lambda ()

(sync nack) (printf "not first")))
;; This event is never ready
(channel-recv-evt (channel))))

;; This event is ready eventually
(channel-recv-evt c))) ; ⇒ "Hello"

;; Meanwhile, “not first” is printed

Each timesync is applied to a NACK-guarded event, the guard
procedure is called with a newly generated NACK event. Thus, a
NACK event becomes ready only when a specific guard-generated
event is not chosen in a specificsync call.

We defer a complete definition of “not chosen” to Section 7, fol-
lowing a motivating example.

6 Queue: Complete and Improved

Having reviewed the Concurrent ML primitives, we are ready to
complete the implementation sketch of queues from Section 4.
First, however, we refine the queue abstraction to better match
the programming idioms of Concurrent ML. This refinement helps
demonstrate that our strategy for kill-safety applies to other Con-
current ML abstractions. After showing the implementation of the
first improved queue abstraction, we improve the abstraction one
step further to demonstrate an additional key idiom.

6.1 Queue Actions as Events

Our original queue sketch providedqueue-send andqueue-recv
functions that block until the corresponding action completes. We
should instead providequeue-send-evt and queue-recv-evt
functions that generate events. With events, a programmer can in-
corporate queues in future synchronization abstractions, which may
need to select among multiple blocking actions.

(define q (queue))
(sync (queue-send-evt q "Hello"))
(sync (queue-send-evt q "Bye"))
(sync (queue-recv-evt q)) ; ⇒ "Hello"
(sync (queue-recv-evt q)) ; ⇒ "Bye"

Figure 8 shows the complete implementation of improved, kill-safe
queues:

• The queue function creates a thread to manage the internal
list of values. Access to the internal list is thus implicitly
single-threaded, avoiding race conditions.

• When the queue is neither empty nor full, the queue-managing
thread useschoice-evt to select among the send and receive
actions. If both actions become enabled at once, one or the
other is chosen atomically and fairly.

• The wrap-evt function meshes withchoice-evt to im-
plement a dispatch for the ready action within the manager
thread.

• The queue-send-evt function guards its result event with
a use ofthread-resume. The guard ensures that the man-
ager thread runs to service the send. Thequeue-recv-evt
similarly guards its result.

• If a queue becomes unreachable, its manager thread is garbage
collected. More generally, when a thread becomes perma-
nently blocked because all objects that can unblock it become
unreachable, the thread itself becomes unreachable, and its
resources can be reclaimed by the garbage collector.

To a consumer of the abstraction, the values produced byqueue ,
queue-recv-evt , andqueue-send-evt have the same first-class
status as values produced bychannel, channel-recv-evt, and
channel-send-evt. For example, queuesend andrecv events
can be multiplexed with other events (usingchoice-evt) in build-
ing additional abstractions.

6.2 Selective Dequeue

In DrScheme’s help system, aqueue is used in place of a socket
that listens for connections. Thequeue abstraction might also be
useful for handling messages to GUI objects, such as a mouse-click
messages and refresh messages. A GUI message queue, however,
must support a selective dequeuing. For example, a task might
wish to handle only refresh messages posted to the queue, leaving

;; queue : → α-queue
;; queue-send-evt : α-queue α → void-event
;; queue-recv-evt : α-queue→ α-event

(define-struct q (in-ch out-ch mgr-t))

(define (queue)
(define in-ch (channel)) ; to acceptsends into queue
(define out-ch (channel)) ; to supply recvs from queue
;; A manager thread loops withserve
(define (serve items)

(if (null? items)
;; Nothing to supply arecv until we accept asend
(serve (list (sync (channel-recv-evt in-ch))))
;; Accept asend or supply a recv , whichever is ready
(sync (choice-evt

(wrap-evt
(channel-recv-evt in-ch)
(lambda (v)

;; Accepted asend ; enqueue it
(serve (append items (list v)))))

(wrap-evt
(channel-send-evt out-ch (car items))
(lambda (void)

;; Supplied arecv ; dequeue it
(serve (cdr items))))))))

;; Create the manager thread
(define mgr-t (spawn (lambda () (serve (list)))))
;; Return a queue as an opaqueq record
(make-q in-ch out-ch mgr-t))

(define (queue-send-evt q v)
(guard-evt
(lambda ()

;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Channel send, as before
(channel-send-evt (q-in-ch q) v))))

(define (queue-recv-evt q v)
(guard-evt
(lambda ()

;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Channel receive, as before
(channel-recv-evt (q-out-ch q)))))

Figure 8. Implementation of a kill-safe queue

mouse-click messages intact.

Unfortunately, selective dequeue cannot be implemented by de-
queuing a message, applying a predicate, then re-posting the mes-
sage if the predicate fails; re-posting the unwanted message changes
its order in the queue with respect to other messages.

To support selective dequeue, we must modify the server so that it
accepts dequeue requests with a corresponding predicate, and then
satisfies a request only when an item in the queue matches the pred-
icate. On the client side, the selective receive event must be guarded
so that it sends a request to the server, then accepts a result through
a newly created channel. The new channel ties together the request
and the result, so that a result is sent to the correct receiver.

Figure 9 shows a revision of the queue implementation to sup-
port selective dequeue. The manager thread still acceptssends
throughin-ch , but it no longer supplies queued items to a fixed

;; msg-queue : → α-msg-queue
;; msg-queue-send-evt : α-msg-queue α → void-event
;; msg-queue-recv-evt : α-msg-queue (α → bool) → α-event

(define-struct q (in-ch req-ch mgr-t))

(define (msg-queue)
(define in-ch (channel))
(define req-ch (channel))
(define never-evt (channel-recv-evt (channel)))
(define (serve items reqs)

(sync (apply
choice-evt
;; Maybe accept asend
(wrap-evt
(channel-recv-evt in-ch)
(lambda (v)

;; Accepted asend ; enqueue it
(serve (append items (list v)) reqs)))

;; Maybe accept arecv request
(wrap-evt
(channel-recv-evt req-ch)
(lambda (req)

;; Accepted arecv request; add it
(serve items (cons req reqs))))

;; Maybe service arecv request inreqs
(map (make-service-event items reqs)

reqs))))
(define (make-service-event items reqs)

(lambda (req)
(define pred (car req))
(define out-ch (cadr req))
;; Search queue items usingpred
(find-first-item pred items
(lambda (item)

;; Found an item; try to servicereq
(wrap-evt
(channel-send-evt out-ch item)
(lambda (void)

;; Serviced, so remove item and request
(serve (remove item items)

(remove req reqs)))))
(lambda ()

;; No matching item to servicereq
never-evt))))

(define mgr-t
(spawn (lambda () (serve (list) (list)))))

(make-q in-ch req-ch mgr-t))

(define (msg-queue-send-evt q v)
;; Same asqueue-send-evt in Figure 8
....)

(define (msg-queue-recv-evt q pred)
(guard-evt
(lambda ()

(define out-ch (channel))
;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Send the server a request for an item matching
;; pred , and request reply toout-ch
(sync (channel-send-evt (q-req-ch q)

(list pred out-ch)))
;; Result arrives onout-ch
(channel-recv-evt out-ch))))

Figure 9. Queue with selective dequeue, first attempt

(define (msg-queue)
....
(define (serve queue reqs)

....
;; Usemake-service/abandon-event
;; instead ofmake-service-event
(map (make-service/abandon-event queue reqs)

reqs))))
....
(define (make-service/abandon-event queue reqs)

(lambda (req)
(choice-evt
;; Service event, as before
((make-service-event queue reqs) req)
;; Add event to detect that the receiver gives up
(wrap-evt (caddr req) ; gave-up-evt

(lambda (void)
;; Receiver gave up; remove request
(serve queue (remove req reqs)))))))

....

(define (msg-queue-recv-evt q pred)
(nack-guard-evt
(lambda (gave-up-evt)

(define out-ch (channel))
;; As before, but also tell the server thatgave-up-evt
;; will become ready if we give up
(thread-resume (q-mgr-t q) (current-thread))
(sync (channel-send-evt (q-req-ch q)

(list pred out-ch
gave-up-evt)))

;; Result arrives onout-ch
(channel-recv-evt out-ch))))

Figure 10. Revision to Figure 9

out-ch channel. Instead, the manager thread accepts receive re-
quests throughreq-ch , and it keeps a list of the requests. While
the manager waits for sends and additional receive requests, it also
services requests for which a matching item is available.

The initial implementation of selective dequeue, however, contains
a space leak. The following example illustrates the problem:

(define q (msg-queue))
(sync (msg-queue-send-evt q 1))
(sync (msg-queue-send-evt q 2))
(sync (choice-evt

(msg-queue-recv-evt q odd?)
(msg-queue-recv-evt q even?)))

....

Thesync call sends two requests to the server. One is serviced, and
the program continues. Meanwhile, a leftover request remains with
the server. The request will never be successfully serviced, because
nosync waits on the associatedout-ch . Still, the request is stuck
in the internalreqs list, and leftover requests can pile up over time,
degrading performance and wasting resources. A similar problem
occurs if the thread making a request is terminated.

To avoid this problem, the server needs to know when
sync has abandoned a receive request. Figure 10 shows
how nack-guard-evt provides this information. The
msg-queue-recv-evt function now sends the manager a
“gave up” event in addition to a result channel. The manager thread
uses the “gave up” event to keep the request list clean.

Themsg-queue example illustrates a particular Concurrent ML id-
iom: a client–server protocol where the client sends a request to
the server, but may withdraw the request before it can be satisfied.
Withdrawal reliably prevents acceptance and vice-versa, due to the
rendezvous associated with a channel transfer (i.e., the sender and
receiver must simultaneously agree to the transfer of a result).

The request idiom poses an extra challenge for kill-safety. A client
can be terminated at any point in the request cycle, so we must de-
fine “not chosen” fornack-guard-evt so that it handles this possi-
bility. The next section completes our explanation of MzScheme’s
primitives with this definition of “not chosen”.

7 Termination and NACKs

Recall that the event provided to a guard procedure by
nack-guard-evt becomes ready if the guard-generated event is
not chosen. MzScheme extends the Concurrent ML definition of
“not chosen” so that it includes all of the following cases, which
cover all of the ways that a thread can abandon an event:

• Thesync call chose an event other than the one returned by
the guard.

• Control escaped from thesync call through an exception or
continuation jump. The exception or jump may have been
triggered through a break signal, by another guard involved in
the samesync, or even by the guard procedure that received
the NACK event. (Continuation jumps back into a guard are
always blocked, so multiple escapes are not possible.)

• Thesyncing thread terminated (i.e., it is suspended and un-
reachable).

MzScheme’snack-guard-evt corresponds to Concurrent ML’s
withNack. An earlier version [19] of Concurrent ML offered
wrapAbort, instead, and a later presentation [20] explains how
withNack can be implemented withwrapAbort. Our definition
of “not chosen” does not allow such an implementation, and thus
strengthens the argument thatwithNack is the correct primitive.

8 Design Considerations

Before arriving at MzScheme’s current primitives for kill-safe ab-
stractions, we explored two main alternatives:

• Restricted atomic sections: As mentioned in Section 2.2,
the kernel cannot allow a task to execute arbitrary code atom-
ically, otherwise it might starve the rest of the system. The
kernel might, however, allow a task to execute atomically for
a short period of time, or to execute code that provably termi-
nates in a short time.

We abandoned this approach, because we could not find a way
to define “short time” that made much sense to the program-
mer. Dynamic measurements in terms of clock ticks or pro-
gram operations were too sensitive to small program changes,
and static methods, based on limiting the code to certain prim-
itive operations, proved insufficiently expressive.

• Transactions with rollbacks and commit points: Although
a transaction-oriented approach looked promising, and al-
though Rudys and Wallach have made progress in this di-
rection [22], synchronous channels encode directly the kind
of transactions that seem most useful for our purposes. We
therefore abandoned this direction and embraced the Concur-
rent ML primitives as our base.

Two aspects of the current design merit further review. The first
concerns the usefulness of immediate termination independent of
reachability. The second relates to the transitivity of thread opera-
tions.

8.1 Terminated versus Suspended+Unreachable

Thespawn function described in this paper has the primitive name
thread/suspend-to-kill in MzScheme. MzScheme also pro-
vides athread primitive, which creates a thread that is immedi-
ately terminated when it is shut down by a custodian. Immediate
termination acts as hint to the run-time system, so that it can re-
claim the thread’s resources.

In our implementation, the hint appears to be worthwhile. In-
deed, we have usedthread/suspend-to-kill so far only to im-
plement kill-safe abstractions. Nevertheless, the hint’s usefulness
most likely reflects weakness in our memory manager. In princi-
ple, immediate termination can be implemented in terms ofspawn
by introducing an indirection to the thread descriptor that is sev-
ered when the thread is shut down (so that the underlying thread
descriptor become inaccessible).

8.2 Transitive Resume and Non-Transitive Promotion

Thethread-resume function can yoke one thread to another for
resumes. If a chain of threads become yoked, a resume for the initial
thread propagates through the entire chain. This transitivity does
not apply to the promotion of a thread to a more superior custodian.

The lack of transitivity for promotion could create a problem in
the following situation. Suppose that a manager thread within an
object creates several helper threads when it starts. As the object
is used by different tasks, the manager thread is promoted to the
control of a superior custodian, but its helpers are not automati-
cally promoted, and therefore they may become suspended when
the manager thread keeps running.

This pattern has not appeared in any implementation so far. If it
did, the problem could be solved by changing the manager thread’s
role so that its only job is to resume and promote helper threads;
the manager’s original work would become the job of a new helper.
Without concrete experience, we cannot judge whether this conver-
sion is reasonable, or whether it is so difficult that our primitives
should be refined to support transitive promotion.

9 Related Work

Much previous work addresses the interaction between termination
and synchronization for specific primitives. Examples include work
on monitors in Pilot [17] and remote pointers in Luna [11]. To our
knowledge, no previous work addresses the problem of termination
with respect toprogrammer-definedsynchronization abstractions.
Indeed, the problem makes sense only after programmers are given
significant abstraction capability, which is why our work depends
on Concurrent ML [18, 19, 20].

The idea of managing a resource through an designated thread
appears in many contexts, notably in microkernels [5]. Argus’s
guardians [15] reflect a similar idea in the area of persistent, dis-
tributed computing. Our specific use of the thread-manager pattern
is typical of Concurrent ML programs, but also reminiscent of the J-
Kernel [10] approach, which creates a thread when crossing a trust
boundary to defend against termination. We extend this idea by

adding a mechanism to adjust a thread’s execution capability rela-
tive to other threads.

CSP-style communication [12] is especially popular for purely
functional languages such as Erlang [1] and Concurrent
Haskell [13]. Our handling of termination applies to a purely func-
tional setting as well as it does for Scheme and ML. (No mutations
appear in our examples.)

MzScheme does not provide a way to revoke access to an object, as
in Luna [11]. It also provides no way to disable code that is asso-
ciated with a task, as in Rudys and Wallach’s soft termination [21].
Given a mechanism for disabling code, we conjecture that code
fragments could be connected to the custodian hierarchy to prevent
a shared abstraction’s code from being disabled prematurely.

10 Conclusion

MzScheme provides the run-time system for the DrScheme pro-
gramming environment, the PLT web server, and other applications
that naturally consist of cooperating tasks. To better support such
applications, we experiment with task-management constructs in
MzScheme that ease cooperation without abandoning control. In
the long run, we hope to build ever larger applications by compos-
ing other applications, and we hope to make this composition as
simple as composing libraries.

This paper reports the latest step in our experiment, which allows
a set of applications to trust a communication abstraction without
trusting all clients of the abstraction, and without requiring the ker-
nel to trust the abstraction. In effect, we have freed application
programmers in MzScheme to pursue their own experiments for
improving cooperation.

11 References

[1] J. Armstrong, R. Virding, C. Wikstr̈om, and M. Williams.
Concurrent Programming in Erlang. Prentice-Hall, 1996.

[2] G. Back, W. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, resource management, and sharing in Java. InProc.
IEEE Conference on Operating Systems Design and Imple-
mentation, pages 333–346, Oct. 2000.

[3] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau.
Java operating systems: Design and implementation. InPro-
ceedings of the USENIX 2000 Technical Conference, pages
197–210, San Diego, CA, June 2000.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Extensi-
bility, safety and performance in the SPIN operating system.
In Proc. ACM Symposium on Operating Systems Principles,
pages 267–284, Dec. 1995.

[5] D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid, R. P.
Draves, R. W. Dean, A. Forin, J. Barrera, H. Tokuda, G.-
R. Malan, and D. Bohman. Microkernel operating system
architecture and Mach.Journal of Information Processing,
14(4):442–453, 1991.

[6] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and
M. Felleisen. DrScheme: A pedagogic programming envi-
ronment for Scheme. InProc. International Symposium on
Programming Languages: Implementations, Logics, and Pro-
grams, pages 369–388, Sept. 1997.

[7] M. Flatt. PLT MzScheme: Language manual. Technical Re-
port TR97-280, Rice University, 1997.

[8] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen.
Programming languages as operating systems (or revenge
of the son of the Lisp machine). InProc. ACM Interna-
tional Conference on Functional Programming, pages 138–
147, Sept. 1999.

[9] P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and
M. Felleisen. Programming the Web with high-level program-
ming languages. InProc. European Symposium on Program-
ming, volume 2028 ofLecture Notes in Computer Science.
Springer-Verlag, 2001.

[10] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection domains
in Java. InProc. of USENIX Annual Technical Conference,
pages 259–270, June 1998.

[11] C. Hawblitzel and T. von Eicken. Luna: a flexible Java protec-
tion system. InProc. IEEE Conference on Operating Systems
Design and Implementation, Oct. 2002.

[12] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

[13] S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In
Proc. ACM Symposium on Principles of Programming Lan-
guages, pages 295–308, Jan. 1996.

[14] I. M. Leslie, D. McAuley, R. J. Black, T. Roscoe, P. R.
Barham, D. M. Evers, R. Fairburns, and E. A. Hyden. The
design and implementation of an operating system to sup-
port distributed multimedia applications.IEEE Journal on
Selected Areas in Communications, 14(7):1280–1297, Sept.
1996.

[15] B. Liskov and R. Scheifler. Guardians and actions: Linguistics
support for robust, distributed systems.ACM Transactions on
Computing Systems, 5(3):381–404, 1983.

[16] S. Marlow, S. L. P. Jones, A. Moran, and J. H. Reppy. Asyn-
chronous exceptions in haskell. InProc. ACM Conference on
Programming Language Design and Implementation, pages
274–285, 2001.

[17] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch,
P. McJones, H. Murray, and S. Purcell. Pilot: An operating
system for a personal computer.Communications of the ACM,
23(2):81–92, Feb. 1980.

[18] J. H. Reppy. Higher–Order Concurrency. Technical Report
TR92-1852, Cornell Univ, Ithaca, NY, 1992.

[19] J. H. Reppy. Concurrent ML: Design, application and seman-
tics. In Functional Programming, Concurrency, Simulation
and Automated Reasoning, pages 165–198, 1993.

[20] J. H. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999.

[21] A. Rudys, J. Clements, and D. S. Wallach. Termination in
language-based systems.ACM Transactions on Information
and System Security, 5(3):138–168, 2002.

[22] A. Rudys and D. S. Wallach. Transactional rollback for
language-based systems. InProc. International Conference
on Dependable Systems and Networks, June 2002.

[23] Soper, P., specification lead. JSR 121: Application isolation
API specification, 2003.http://www.jcp.org/.

