Supplementary Material for
Porting Racket to Chez Scheme (Experience Report)

ANONYMOUS AUTHOR(S)

All benchmark measurements were performed on an Intel Core 17-2600 3.4GHz processor running
64-bit Linux.

1 TRADITIONAL SCHEME BENCHMARKS

The traditional Scheme benchmarks in figure 1 are based on a suite of small programs that have
been widely used to compare Scheme implementations. The benchmark sources are in the "common"
directory of the racket-benchmarks package in the Racket GitHub repository.

takr lattice2 paraffins deriv
csmm JoXY e csm
Ccs’ Cs’ Cs’
R/ICS : R/CS! R/ICS
R R R
earley graphs scheme2

destruct i scheme
CSE™S
CS' G

"

conform

Fig. 1. Traditional Scheme benchmarks. Shorter is better. CS = unmodifed Chez Scheme, CS’ =
modified Chez Scheme, R/CS = Racket CS, R = current Racket implementation.

The results are in two groups, where the group starting with scheme-c uses mutable pairs, so
they are run in Racket as #lang rb5rs programs; for Racket CS we expect overhead due to the use
of a record datatype for mutable pairs, instead of Chez Scheme’s built-in pairs.

The groups are sorted by the ratio of times for Chez Scheme and the current Racket imple-
mentation. Note that the break-even point is near the end of the first group. The racket collatz
benchmark turns out to mostly measure the performance of the built-in division operator for
rational numbers, while fft and nucleic benefit from flonum unboxing,.

For measurements in this section, we used Chez Scheme 9.5.1 commit 6d44fee2b3 at
github:cicso/ChezScheme, modified as commit a60e6049ac at github: racket/ChezScheme,
and Racket 7.2.0.3 as commit 66f7e0c3e3 at github:racket/racket.

Author’s address: Anonymous Author(s).

2 Anonymous Author(s)

2 SHOOTOUT BENCHMARKS

The benchmarks in figure 2 are based on a series of programs that have appeared over the years
as part of the Computer Language Benchmarks Game to compare implementations of different
languages.! The benchmark sources are in the "shootout" directory of the racket-benchmarks
package in the Racket GitHub repository. We have only Racket implementations of these programs.

wordfreq pidigitsl spectralnorm-g partialsums random recursive

R/CS R/ICS R/CS R/CS R/ICS R/ICS
R R R R R R

nbody-generic
R/ICS
R

5343 msec

4567 msec

sumcol nbody-vec
RICS TSN R/CS [N
.]
lists heap r tch reversefile except hash
R/CS R/ICS R/ICS R/CS! R/ICS R/CS
R R R R R R
k-nucleotide echo strcat mandelbrot pidigits chameneos
R/CS R/CS ERE= R/ICS R/CS R/CS R/ICS
R 3] 2000 meec R R R R

spectralnorm hash2

Fig. 2. Shootout benchmarks. Shorter is better. R/CS = Racket CS, R = current Racket implementa-
tion.

The groups are sorted by the ratio of times for Racket CS and the current Racket implementation.
Results closer to the end of the table tend to rely more on Racket’s hash tables, I/O, regular-expression
matcher, thread scheduler, and flonum unboxing.

For measurements in this section, we used Chez Scheme 9.5.1 modified as commit
a60e6049ac at github:racket/ChezScheme, and Racket 7.2.0.5 as commit 66f7e0c3e3
at github:racket/racket.

3 STARTUP TIMES

Startup for just the runtime system without any libraries:

racket -n startup time

R/CS 73 msgel

REL-

The Racket CS startup image has much more Scheme and Racket code that is dynamically loaded
and linked, instead of loaded as a read-only code segment like the compiled C code that dominates
the current Racket implementation. We can build the current Racket implementation in a mode
where its Racket-implemented macro expander is compiled to C code instead of bytecode, too,
shown below as “R/cify.” We can also compare to Racket v6, which had an expander that was
written directly in C:

racket -n startup time
R/CS R
RO
R/cify P s
RV6 | s

Ihttps://benchmarksgame-team.pages.debian.net/benchmarksgame/

Supplementary Material for
Porting Racket to Chez Scheme (Experience Report) 3

Loading the racket/base library:
racket -1 racket/base startup+load time
R/CS [z
R
Racket CS’s machine code is bigger than current Racket’s bytecode representation. Furthermore, the
current Racket implementation is lazy about parsing some bytecode. We can disable lazy bytecode
loading with the -d flag, shown as “R/all™:

racket -1 racket/base startup+load time

R/CS [Exm
R X

55 msof
R/all X

Loading the larger racket library, which is what the racket executable loads by default for
interactive mode:
racket -1 racket startup+load time

R/CS E
R -
B ——

The measurements in this section were gathered by using time in a shell a few times
and taking the median. The command was as shown, but using racket -d for the
“R/all” lines.

We used Chez Scheme 9.5.1 modified as commit 993fb9036a at gi thub: racket/ChezScheme,
and Racket 7.2.0.5 as commit c9e3788d42 at github:racket/racket.

4 MEMORY USE

The following plots show memory use, including both code and data, after loading racket/base
or racket, but subtracting memory use at the end of a run that loads no libraries (which reduces
noise from different ways of counting code in the initial heap). The “R/jit!” line uses -d to load
all bytecode eagerly, and it further forces that bytecode to be compiled to native code by the JIT
compiler.

racket -1 racket/base memory use after load

10 MB 4 MB™) 17 MB

R/CS R Ri/all R/jit!

racket -1 racket memory use after load

!
J

MB
R/CS R Ri/all R/jit!

These results show that bytecode is more compact than machine code, as expected. Lazy parsing of
bytecode also makes a substantial difference in memory use for the current Racket implementation.
Racket’s current machine code takes a similar amount of space as Chez Scheme machine code, but
the JIT overhead and other factors make it even larger. (Bytecode is not retained after conversion
to machine code by the JIT.)

On a different scale and measuring peak memory use instead of final memory use for DrRacket
start up and exit:

4 Anonymous Author(s)

drracket peak memory use for startup+exit

671 MB | 431 MB

R/CS R R/all R/jit!

This result reflects that DrRacket’s memory use is mostly the code that implements DrRacket, at
least if you just start DrRacket and immediately exit.

The measurements in this section were gathered by running racket starting with

the arguments -1 racket/base, -1 racket, or -1 drracket. The command further
included -W "debug@GC" -e ’(collect-garbage)’ -e ’(collect-garbage)’ and
recording the logged memory use before that second collection. For the “R” lines, the
reported memory use includes the first number that is printed by logging in square
brackets, which is the memory occupied by code outside of the garbage collector’s
directly managed space. For “R/all,” the -d flag is used in addition, and for “R/jit!,” the
PLT_EAGER_JIT environment variable was set in addition to supplying -d.

We used Chez Scheme 9.5.1 modified as commit 993fb9036a at gi thub: racket/ChezScheme,
and Racket 7.2.0.5 as commit c9e3788d42 at github:racket/racket.

5 EXPAND AND COMPILE TIMES

These plots compare compile times from source for the racket/base module (and all of its depen-
dencies) and the racket module (and dependencies):

racket -cl racket/base load-from-source time
R/CSEER--
RES -
R/jit! B8
racket -cl racket
R/CSEZE™
R E
R/jit! EE R

Compilation requires first macro-expanding source. Racket CS and current Racket use the same
expander implementation. The following plots show how parts of the compile time can be attributed
to specific subtasks:

racket -cl racket/base load-from-source time
R/CSEEE-
REF = expand
R/jit! 28 W = schemify
W = compile
racket -cl racket M = register allocate
R/CS S e -
R R u
Rjit m

We can alternatively start with modules that are already expanded by the macro expander and
just compile them:

Supplementary Material for

Porting Racket to Chez Scheme (Experience Report) 5
racket -Ml racket/base load-from-expanded time
RICSER e
ST

Rijit!}
racket -Ml racket
R/CS EEE S
R v
Rjit! BB
We can make a relatively direct comparison of compile times between C and Racket, because the

Racket macro expander was formerly written in C, and now it is written in Racket with essentially
the same algorithms and architecture. The implementations are not so different in lines of code: 45
KLoC in C versus 28.5 KLoC in Racket. The following plot shows compile times for the expander’s
implementation:

expander compile time

CS T —
C E—

To further check that we’re comparing similar compilation tasks, we can check the size of the
generated machine code. We can compile the Racket code to C code through a cify compiler. Below
is a summary of machine-code sizes for the various compiled forms of the expander:

expander machine code size

2300 KB 2900 KB 1700 KB | 900 KB

CS RYjit! mijitrno Ricify

The current Racket implementation generates much more code from the same implementation, in
part because it inlines functions aggressively and relies on the fact that only called code is normally
translated to machine code; the “R/jit!/no” bar shows the code size when inlining is disabled.

The measurements in compile-time plots come from running the shown command (but
with racketcs instead of racket for the “R/CS” lines) with the PLT_EXPANDER_TIMES
and PLT_LINKLET_TIMES environment variables set. The overall time is as reported by
time for user plus system time, and the divisions are extracted from the logging that is
enabled by the environment variables.

For measuring compile times on the expander itself, the Chez Scheme measurement is
based on the build step that generates "expander. so", the current-Racket measurement
is based on the build step that generates "cstartup.inc", and the C measurement
is based on subtracting the time to rebuild Racket version 6.12 versus version 7.2.0.3
when the ".0" files in "build/racket/gc2" are deleted.

For measuring machine-code size, the expander’s code size for Chez Scheme was
computed by comparing the output of object-counts after loading all expander
prerequsites to the result after the expander; to reduce the code that is just form the 1i-
brary wrapper, the expander was compiled as a program instead of as a library. The code
size for Racket was determined by setting PLT_EAGER_JIT and PLT_LINKLET_TIMES
and running racket -d -n, which causes the expander implemtation to be JITted and

6 Anonymous Author(s)

total bytes of code generated by the JIT to be reported. The “R/no-inline” variant was the
same, but compiling the expander to bytecode with compile-context-preservation-
enabled set to #f, which disables inlining. The “R/cify” code size was computed by
taking the difference on sizes of the Racket shared library for a normal build and
one with --enable-cify, after stripping the binaries with strip -S, then further
subtracting the size of the expander’s bytecode as it is embedded in the normal build’s
shared library. The “C” code size was similarly computed by subtracting the size of the
Racket shared library for version 7.2.0.3 from the size for the 6.12 release, stipped and
with the expander bytecode size subtracted.

We used Chez Scheme 9.5.1 modified as commit 993fb9036a at gi thub: racket/ChezScheme,
and Racket 7.2.0.3 as commit c9e3788d42 at github:racket/racket.

6 BUILD PROFILE
Building the Racket distribution from source involves compiling Racket code, running documenta-
tion to gather cross-reference information, rendering that documentation to HTML form, and the
re-rendering some documentation to reach a fixed point. Plots in this section show memory use
plotted against time for building the Racket distribution from source, all on the same scale.

For Racket CS:

38¢ | ouraudilz 42|55

1.2GB

memory use

_— 2h32m

For the current Racket implementation:

phax. 1,085, 75HK] B ki1 6548 44

wﬁw

To partly separate the cost of macro expansion and module loading from the cost of compilation
after expansion, the following plots show build activity when using current Racket and making
“compile” just mean “expand”:

Supplementary Material for
Porting Racket to Chez Scheme (Experience Report) 7

ik 1]0s 8670 | [Blral bn3 38 55 51

Given the result of the expand-only build as an input, we can then compile each fully expanded
module to machine code. For Racket CS:

Poak: 708,140k

m

For the current Racket implementation:

Pebic 253,471€ D

U

The shortness of these last two plots illustrate that the overall time to build Racket from source
is not so much from compile-time differences as other end-to-end performance effects related to
loading and instantiating compile-time modules for macro expansion.

These plots in this section were generated using the "plt-build-plot" package,
which drives a build from source and plots the results. The build with “compile” as
“expand” was created by setting the PLT_COMPILE_ANY environment variable, and
then the finishing builds were measured by another run on the result but using the
--skip-clean flag for "plt-build-plot".

We used Chez Scheme 9.5.1 modified as commit 993fb9036a at gi thub: racket/ChezScheme,
and Racket 7.2.0.3 as commit c9e3788d42 at github:racket/racket.

	1 Traditional Scheme Benchmarks
	2 Shootout Benchmarks
	3 Startup Times
	4 Memory Use
	5 Expand and Compile Times
	6 Build Profile

