
Computation versus Programming

Last time, we talked about computation

(image=? (image+))

 → (image=?)

 → true

Programming?

Write an anonymizer...

(define (anonymize i)

 (offset-image+

 i

 0 0

 (filled-circle (image-width i)

 (image-height i)

 ’blue)))

We somehow wrote the function in one big, creative chunk

Design Recipe I

Data

Understand the input data: num, bool, sym, or image

Contract, Purpose, and Header

Describe (but don’t write) the function

Examples

Show what will happen when the function is done

Body

The most creative step: implement the function body

Test

Run the examples

Data

Choose a representation suitable for the function input

Fahrenheit degrees num

Grocery items sym

Faces image

Wages num

...

Handin artifact: none for now

Contract, Purpose, and Header

Contract

Describes input(s) and output data

f2c : num -> num

is-milk? : sym -> bool

wearing-glasses? : image image image -> bool

netpay : num -> num

Handin artifact: a comment

; f2c : num -> num

; is-milk? : sym -> bool

1-10

Contract, Purpose, and Header

Purpose

Describes, in English, what the function will do

Converts F-degrees f to C-degrees

Checks whether s is a symbol for milk

Checks whether p2 is p1 wearing glasses g

Computes net pay (less taxes) for n hours worked

Handin artifact: a comment after the contract

; f2c : num -> num

; Converts F-degrees f to C-degrees

Contract, Purpose, and Header

Header

Starts the function using variables that are metioned in purpose

(define (f2c f))

(define (is-milk? s))

(define (wearing-glasses? p1 p2 g))

(define (netpay n))

Check: function name and variable count match contract

Handin artifact: as above, but absorbed into implementation

; f2c : num -> num

; Converts F-degrees f to C-degrees

(define (f2c f))

Examples

Show example function calls an result

(f2c 32) "should be" 0

(f2c 212) "should be" 100

(is-milk? ’milk) "should be" true

(is-milk? ’apple) "should be" false

Check: function name, argument count and types match contract

Handin artifact: as above, after header/body

; f2c : num -> num

; Converts F-degrees f to C-degrees

(define (f2c f))

(f2c 32) "should be" 0

(f2c 212) "should be" 100

Body

Fill in the body under the header

(define (f2c f)

 (* (- f 32) 5/9))

(define (is-milk? s)

 (symbol=? s ’milk))

Handin artifact: complete at this point

; f2c : num -> num

; Converts F-degrees f to C-degrees

(define (f2c f)

 (* (- f 32) 5/9))

(f2c 32) "should be" 0

(f2c 212) "should be" 100

11-22

Design Recipe - Each Step Has a Purpose

Data

Shape of input data will drive the implementation

Contract, Purpose, and Header

Provides a first-level understanding of the function

Examples

Gives a deeper understanding and exposes specification issues

Body

The implementation is the whole point

Test

Evidence that it works

Compound Data

A posn is

 (make-posn num num)

(make-posn 1 2) is a value

(posn-x (make-posn 1 2)) → 1

(posn-y (make-posn 1 2)) → 2

How about program design?

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it’s bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 ...)

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it’s bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

24-29

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it’s bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 (cond

 [(> (posn-x p) (posn-y p)) (posn-x p)]

 [else (posn-y p)]))

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it’s bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 (cond

 [(> (posn-x p) (posn-y p)) (posn-x p)]

 [else (posn-y p)]))

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

Since this guideline applies before the usual body work, let’s split it into
an explicit step

Design Recipe II

Data

Understand the input data

Contract, Purpose, and Header

Describe (but don’t write) the function

Examples

Show what will happen when the function is done

Template

Set up the body based on the input data (and only the input)

Body

The most creative step: implement the function body

Test

Run the examples

Body Template

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; ...

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

Check: number of parts in template =
number of parts data definition named in contract

A posn is

 (make-posn num num)

30-35

Body Template

If the input is compound data, start the body by selecting the parts

Handin artifact: a comment (required starting with HW 3)

; max-part : posn -> num

; Return the X part of p is it’s bigger

; than the Y part, otherwise the Y part

;

;

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

Data Definitions and define-struct

Here’s what we’d like:

A snake is
 (make-snake sym num sym)

We can tell DrScheme about snake:

(define-struct snake (name weight food))

Creates the following:

make-snake

snake-name

snake-weight

snake-food

Data

Deciding to define snake is in the first step of the design recipe

Handin artifact: a comment and/or define-struct

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Now that we’ve defined snake, we can use it in contracts

Expanding the Zoo

We have snakes, and armadillos are similar. Let’s add ants.

An ant has

a weight

a location in the zoo

; An ant is

; (make-ant num posn)

(define-struct ant (weight loc))

(make-ant 0.001 (make-posn 4 5))

(make-ant 0.007 (make-posn 3 17))

36-45

Programming with Ants

Define ant-at-home?, which takes an ant and reports whether it is at the
origin

Programming with Ants

Contract, Purpose, and Header

; ant-at-home? : ant -> bool

Programming with Ants

Contract, Purpose, and Header

; ant-at-home? : ant -> bool

; Check whether ant a is home

Programming with Ants

Contract, Purpose, and Header

; ant-at-home? : ant -> bool

; Check whether ant a is home

(define (ant-at-home? a)

 ...)

46-49

Programming with Ants

Examples

; ant-at-home? : ant -> bool

; Check whether ant a is home

(define (ant-at-home? a)

 ...)

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) ’= true

(ant-at-home? (make-ant 0.001 (make-posn 1 1))) ’= false

Programming with Ants

Template

; ant-at-home? : ant -> bool

; Check whether ant a is home

(define (ant-at-home? a)

 ... (ant-weight a)

 ... (ant-loc a) ...)

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) ’= true

(ant-at-home? (make-ant 0.001 (make-posn 1 1))) ’= false

Programming with Ants

Template

; ant-at-home? : ant -> bool

; Check whether ant a is home

(define (ant-at-home? a)

 ... (ant-weight a)

 ... (posn-at-home? (ant-loc a)) ...)

New template rule: data-defn reference ⇒ template reference

Add templates for referenced data, if needed, and
implement body for referenced data

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) ’= true

(ant-at-home? (make-ant 0.001 (make-posn 1 1))) ’= false

Programming with Ants

Template

; ant-at-home? : ant -> bool

; Check whether ant a is home

(define (ant-at-home? a)

 ... (ant-weight a)

 ... (posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)

 ... (posn-x p) ... (posn-y p) ...)

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) ’= true

(ant-at-home? (make-ant 0.001 (make-posn 1 1))) ’= false

50-53

Programming with Ants

Body

; ant-at-home? : ant -> bool

; Check whether ant a is home

;

;

;

(define (ant-at-home? a)

 ... (ant-weight a)

 ... (posn-at-home? (ant-loc a)) ...)

;

;

(define (posn-at-home? p)

 ... (posn-x p) ... (posn-y p) ...)

(define (ant-at-home? a)

 (posn-at-home? (ant-loc a)))

(define (posn-at-home? p)

 (and (= (posn-x p) 0) (= (posn-y p) 0)))

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) ’= true

(ant-at-home? (make-ant 0.001 (make-posn 1 1))) ’= false

Shapes of Data and Templates

The shape of the template matches the shape of the data

; An ant is

; (make-ant num posn)

; A posn is

; (make-posn num num)

(define (ant-at-home? a)

 ... (ant-weight a)

 ... (posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)

 ... (posn-x p) ... (posn-y p) ...)

Animals

All animals need to eat...

Define feed-animal, which takes an animal (snake, dillo, or ant) and feeds
it (5 lbs, 2 lbs, or 0.001 lbs, respectively)

What is an animal?

Animal Data Definition

; An animal is either

; - snake

; - dillo

; - ant

The "either" above makes this a new kind of data definition:

data with varieties

Examples:

(make-snake ’slinky 10 ’rats)

(make-dillo 2 true)

(make-ant 0.002 (make-posn 3 4))

54-60

Feeding Animals

; feed-animal : animal -> animal

; To feed the animal a

(define (feed-animal a)

 ...)

(feed-animal (make-snake ’slinky 10 ’rats))

"should be" (make-snake ’slinky 15 ’rats)

(feed-animal (make-dillo 2 true))

"should be" (make-dillo 4 true)

(feed-animal (make-ant 0.002 (make-posn 3 4)))

"should be" (make-ant 0.003 (make-posn 3 4))

Template for Animals

For the template step...

(define (feed-animal a)

 ...)

Is a compound data?

Technically yes, but the definition animal doesn’t have
make-something, so we don’t use the compound-data template rule

Template for Varieties

Choice in the data definition

; An animal is either

; - snake

; - dillo

; - ant

means cond in the template:

(define (feed-animal a)

 (cond

 [... ...]

 [... ...]

 [... ...]))

Three data choices means three cond cases

Questions for Varieties

(define (feed-animal a)

 (cond

 [... ...]

 [... ...]

 [... ...]))

How do we write a question for each case?

It turns out that
(define-struct snake (name weight food))

provides snake?

(snake? (make-snake ’slinky 5 ’rats)) → true
(snake? (make-dillo 2 true)) → false
(snake? 17) → false

61-67

Template

(define (feed-animal a)

 (cond

 [(snake? a) ...]

 [(dillo? a) ...]

 [(ant? a) ...]))

New template rule: varieties ⇒ cond

Now continue template case-by-case...

Template

(define (feed-animal a)

 (cond

 [(snake? a) ... (feed-snake a) ...]

 [(dillo? a) ... (feed-dillo a) ...]

 [(ant? a) ... (feed-ant a) ...]))

Remember: references in the data definition ⇒ template references

; An animal is either

; - snake

; - dillo

; - ant

Shapes of Data and Templates

; An animal is either

; - snake

; - dillo

; - ant

; A snake is

; (make-snake sym num sym)

; A dillo is

; (make-dillo num bool)

; An ant is

; (make-ant num posn)

; A posn is

; (make-posn num num)

(define (feed-animal a)

 (cond

 [(snake? a) ... (feed-snake a) ...]

 [(dillo? a) ... (feed-dillo a) ...]

 [(ant? a) ... (feed-ant a) ...]))

(define (feed-snake s)

 ... (snake-name s) ... (snake-weight s)

 ... (snake-food s) ...)

(define (feed-dillo d)

 ... (dillo-weight d)

 ... (dillo-alive? d) ...)

(define (feed-ant a)

 ... (ant-weight d)

 ... (feed-posn (ant-loc d)) ...)

(define (feed-posn p)

 ... (posn-x p) ... (posn-y p) ...)

Design Recipe III

Data

Understand the input data

Contract, Purpose, and Header

Describe (but don’t write) the function

Examples

Show what will happen when the function is done

Template

Set up the body based on the input data (and only the input)

Body

The most creative step: implement the function body

Test

Run the examples

68-73

Data

When the problem statement mentions N different varieties of a thing,
write a data definition of the form

; A thing is

; - variety1

; ...

; - varietyN

Examples

When the input data has varieties, be sure to pick each variety at least
once.

; An animal is either

; - snake

; - dillo

; - ant

(feed-animal (make-snake ’slinky 10 ’rats))

"should be" (make-snake ’slinky 15 ’rats)

(feed-animal (make-dillo 2 true))

"should be" (make-dillo 4 true)

(feed-animal (make-ant 0.002 (make-posn 3 4)))

"should be" (make-ant 0.003 (make-posn 3 4))

Template

When the input data has varieties, start with cond

N varieties ⇒ N cond lines

Formulate a question to match each corresponding variety

Continue template steps case-by-case

(define (feed-animal a)

 (cond

 [(snake? a) ...]

 [(dillo? a) ...]

 [(ant? a) ...]))

Template

When the input data has varieties, start with cond

N varieties ⇒ N cond lines

Formulate a question to match each corresponding variety

Continue template steps case-by-case

When the data definition refers to a data definition, make the template
refer to a template

(define (ant-at-home? a)

 ... (ant-weight a)

 ... (posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)

 ... (posn-x p) ... (posn-y p) ...)

74-79

Template

When the input data has varieties, start with cond

N varieties ⇒ N cond lines

Formulate a question to match each corresponding variety

Continue template steps case-by-case

When the data definition refers to a data definition, make the template
refer to a template

(define (feed-animal a)

 (cond

 [(snake? a) ... (feed-snake a) ...]

 [(dillo? a) ... (feed-dillo a) ...]

 [(ant? a) ... (feed-ant a) ...]))

Aquarium

Our zoo was so successful, let’s start an aquarium

For a fish, we only care about its weight, so for two fish:

; An aquarium is

; (make-aq num num)

(define-struct aq (first second))

Aquarium Template

; An aquarium is

; (make-aq num num)

Generic template:
; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ... (aq-second a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (+ (aq-first a) (aq-second a)))

(aq-weight (make-aq 7 8)) "should be" 15

And so on, for many other simple aquarium functions...

Tragedy Strikes the Aquarium

Poor blue fish... now we have only one

Worse, we have to re-write all our functions...

; An aquarium is

; (make-aq num)

(define-struct aq (first))

80-86

Aquarium Template, Revised

; An aquarium is

; (make-aq num)

; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (aq-first a))

(aq-weight (make-aq 7)) "should be" 7

And so on, for all of the aquarium functions...

The Aquarium Expands

Hooray, we have two new fish!

Unfortunately, we have to re-re-write all our functions...

; An aquarium is

; (make-aq num num num)

(define-struct aq (first second third))

A Flexible Aquarium Representation

Our data choice isn’t working

An aquarium isn’t just 1 fish, 2 fish, or 100 fish it’s a collection
containing an arbitrary number of fish

No data definition with just 1, 2, or 100 numbers will work

To represent an aquarium, we need a list of numbers

We don’t need anything new in the language, just a new idea

Structs as Boxes

Pictorially,

define-struct lets us define a new kind of box

The box can have as many compartments as we want, but we have to
pick how many, once and for all

(define-struct snake (name weight food))

⇒

(define-struct ant (weight loc))

⇒

87-93

Boxes Stretch

The boxes stretch to fit any one thing in each slot:

’slinky 12 ’rats

Even other boxes:

0.002 2 3

Still, the number of slots is fixed

Packing Boxes

Suppose that

You have four things to pack as one

You only have 2-slot boxes

Every slot must contain exactly one thing

How can you create a single package?

Packing Boxes

This isn’t good enough

because it’s still two boxes...

But this works!

Packing Boxes

And here’s 8 fish:

And here’s 16 fish!

But what if we just add 1 fish, instead of doubling the fish?

But what if we have 0 fish?

94-100

General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

empty

empty

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

(make-bigger-list 5 (make-bigger-list 10 empty))

(make-bigger-list 7 (make-bigger-list 5 (make-bigger-list 10 empty)))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 ...)

101-112

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l) ...]))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (func-for-lon (bigger-list-rest l))

 ...]))

113-116

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

117-120

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (aq-weight (bigger-list-rest l))

 ...]))

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(bigger-list? l)

 (+ (bigger-list-first l)

 (aq-weight (bigger-list-rest l)))]))

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(bigger-list? l)

 (+ (bigger-list-first l)

 (aq-weight (bigger-list-rest l)))]))

Try examples in the stepper

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

Pipes

Pipes end in faucets (open or closed) and sometimes branch

121-124

Pipes

Pipes end in faucets (open or closed) and sometimes branch

Pipes

Pipes end in faucets (open or closed) and sometimes branch

Pipes

Pipes end in faucets (open or closed) and sometimes branch

Pipes

Pipes end in faucets (open or closed) and sometimes branch

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

(define-struct straight (kind next))

(define-struct branch (next1 next2))

125-129

Example Pipelines

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

false

Example Pipelines

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

true

Example Pipelines

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

(make-straight ’copper false)

Example Pipelines

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

(make-straight ’copper

 (make-straight ’lead false))

130-133

Example Pipelines

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

(make-branch

 (make-branch (make-straight ’copper true)

 false)

 (make-branch false

 false))

Programming with Pipelines

; A pipeline is either

; - bool

; - (make-straight sym pipeline)

; - (make-branch pipeline pipeline)

(define (func-for-pipeline pl)

 (cond

 [(boolean? pl) ...]

 [(straight? pl)

 ... (straight-kind pl)

 ... (func-for-pipeline (straight-next pl)) ...]

 [(branch? pl)

 ... (func-for-pipeline (branch-next1 pl))

 ... (func-for-pipeline (branch-next2 pl)) ...]))

Pipeline Examples

Implement the function water-running? which takes a pipeline and
determines whether any faucets are open

Implement the function modernize which takes a pipeline and converts all
’lead straight pipes to ’copper

Implement the function off which takes a pipeline and turns off all the faucets

Implement the function lead-off which takes a pipeline and turns off all the
faucets that receive water through a lead pipe

Implement the function twice-as-long which takes a pipeline and inserts a
’copper straight pipe before every existing piece of the pipeline

134-140

