Getting Started:
Arithmetic, Algebra, and Computing

Arithmetic is Computing

¢ Fixed, pre-defined rules for primitive operators:

2+3=5
4x2=8
cos(0)=1

Arithmetic is Computing

® Fixed, pre-defined rules for primitive operators:
2+3 - 5
4x2 L 8

cos(0) - 1

® Rules for combining other rules:
© Evaluate sub-expressions first
4x2+3) - 4x5 - 20
o Precedence determines subexpressions:

4+2x3 - 4+6 - 10

Algebra as Computing

o Definition:
f(x) = cos(x) + 2
© Expression:

f0) - cos(0)+2 - 1+2 -

e First step uses the substitution rule for functions

3

Scheme Notation

e Put all operators at the front
e Start every operation with an open parenthesis
® Put a close parenthesis after the last argument
® Never add extra parentheses
old New
1+2 (+ 1 2)
4+2x3 (+ 4 (* 2 3))
cos(0) +1 (+ (cos 0) 1)

Scheme Notation

¢ Use the keyword def i ne instead of =

¢ Put def i ne at the front, and group with parentheses

® Move open parenthesis from after function name to before

old

f(x) = cos(x) + 2

New

(define (f x) (+ (cos x) 2))

* Move open parenthesis in function calls

Old New
f(0) (f 0)
f(2+3) (f (+ 2 3))

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))
(f 0)

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

—

(+ (cos 0) 2)

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

- (+ (cos 0) 2)

- (+12)

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

- (+ (cos 0) 2)

- (+ 12

- 3

Beyond Numbers: Booleans

Numbers are not the only kind of values:

old
1<2 -
1>2 -
1>2 -
222 -

true

true

true

true

New
(<12 -
(>12) -
(>12) -
(>=12) -

true
fal se
fal se

true

Beyond Numbers: Booleans

Old
true and false

true or false

l1<2and2>3
l1<0and1=1
1#0

New
(and true fal se)

(or true false)
(and (<1 2) (> 2 3))

(or (<=10) (=11))
(not (=1 0))

13-16

Beyond Numbers: Symbols

(symbol =? "apple "apple) -

(synbol =? ' appl e ' banana) -

true

fal se

Beyond Numbers: Images

(filled-rect 35 35 'red)

(filled-circle 25 25 ' bl ue)

(image+..) - N

(of fset-i mage+ Hss ()]

- N
- @

_).

(i mage=? (inmage+ | o) .)

-

-

(i mage=? . .)
true

Programming with Images

(define (anonymize i)
(of fset-i mge+
[
00
(filled-circle (imge-width i)
(i mage- height i)
"blue)))

(anonym ze ﬂ) > o

Conditionals

17-23

Conditionals in Algebra

General format of conditionals in algebra:

answer question
{ answer question

Example:
_ X if x>0
abs(x) = { -X otherwise
abs(10) =10
abs(-7) =7

Conditionals

General syntax of cond in Scheme:

(cond
[question answer]

[question answer])
¢ Any number of cond lines
® Each line has one question expression and one answer expression

(define (abs x)
(cond
[(>x 0) x]
[else (- x)]))
(abs 10) "shoul d be" 10
(abs -7) "should be" 7

Completing max-image

® Use cond to complete nax- i mage

(define (max-inmage a b)
(cond
[(bi gger-imge? a b) a]
[el se b]))

Evaluation Rules for cond

First question is literally t r ue or el se

(cond
[true answer]
- answer
[question answver])
® Keep only the first answer
Example:
(* 1 (cond - (*10 -0

[true 0]))

24-31

Evaluation Rules for cond

First question is literally f al se

(cond
[fal se answer]
[question answer]

(cond
[question answer]

. .
[question answer]) [question answver])

® Throw away the first line
Example:

(+ 1 (cond
[fal se 1]
[true 17]))

- (+ 1 (cond
[true 17]))

- (+117) - 18

Evaluation Rules for cond

First question isn’'t a value, yet
(cond (cond

[question answer] [_ ansver |

[question answer]) [question answer])
where question - nextques

¢ Evaluate first question as sub-expression

Example:
(+ 1 (cond - (+ 1 (cond
[(<1 2) 5] [true 5]
[el se 8])) [el se 8]))

- (+15 -6

Evaluation Rules for cond

Only queston is false answers

(cond

[fal se 10]) - error: all questions false

Finding Images

(i mage-insi de?

32-38

Image Tests in Conditionals

Now we can combine such operators with cond:

; detect-person : inmage inmage imge -> i nage
; Returns a or b, depending on which is in
(define (detect-person i a b)
(cond
[(image-inside? i a) a
[(image-inside? i b) b]))

alB.

"shoul d be" E

(det ect - person

Compound Data

Finding and Adjusting Images

Suppose we want to write f r anme- per son:

(frame-person

"shoul d be"

Need an operator that reports where an image exists

Finding an Image Position

s . : _

Must return a single value

Correct contract:

find-inmage :

® Aposnisacompound value

i mage i mage -> posn

39- 44

Positions

® Aposn is
(make- posn X'Y)

where Xis a numand Y is a num

Examples:

(make- posn 1 2)
(make- posn 17 0)

A posn is a value, just like a number, symbol, or image

posn-x and posn-y

The posn- x and posn-y operators extract numbers from a posn:
(posn-x (make-posn 1 2)) - 1

(posn-y (rmake-posn 1 2)) - 2

® General evaluation rules for any X and Y:
(posn-x (make-posn X Y)) - X
(posn-y (make-posn XY)) - Y

Positions and Values
Is (make- posn 100 200) avalue?

Yes.
A posnis
(make-posn X'Y)

where Xis anumand Y is a num

Positions and Values
Is (meke-posn (+ 1 2) 200) avalue?
No. (+ 1 2) isnotanum yet.

® Two more evaluation rules:
(make-posn X Y) - (nmke-posn I Y)
when X - Z

(make-posn X Y) - (make-posn X [B)
whenY - Z

Example:
(make-posn (+ 1 2) 200) - (make-posn 3 200)

45-51

Posn Examples
(make-posn (+ 1 2) (+ 3 4))
(posn-x (make-posn (+ 1 2) (+ 3 4)))

; pi xel s-from corner posn -> num
(define (pixels-fromcorner p)

(+ (posn-x p) (posn-y p)))
(pi xel s-from corner (nake-posn 1 2))

; flip : posn -> posn
(define (flip p)

(make-posn (posn-y p) (posn-x p)))
(flip (make-posn 1 2))

Programmer-Defined Compound Data

Other Kinds of Data

Suppose we want to represent snakes:

® name
® weight

e favorite food

What kind of data is appropriate?

Not num bool , sym i mage, or posn...

Data Definitions and define-struct

Here's what we’'d like:

A snake is
(make- snake sym num sym

But nake- snake is not built into DrScheme

We can tell DrScheme about snake:
(define-struct snake (nane wei ght food))
Creates the following:

* nake- snake
® snake- name
® snake- wei ght
® snake- f ood

52-59

Data Definitions and define-struct

Here’s what we'd like:

A snake is
(rmake- snake sym num sym

But make- snake is not built into DrScheme

We can tell DrScheme about snake:

(define-struct snake (name wei ght food))

Creates the following:

(snake- name (nake-snake XY 2)) - X
(snake-wei ght (nmake-snake XY 2)) - Y
(snake-food (nake-snake XY 2)) - Z

60-61

