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1 Continuations and Accumulators

In our exploration of machines for ISWIM, we saw how to explicitly track the current continuation for a
computation (Chapter 8 of the notes). Roughly, the continuation reflects the control stack in a real machine,
including virtual machines such as the JVM. However, accurately reflecting the “memory” use of textual
ISWIM requires an implementation different that from that of languages like Java. The ISWIM machine must
extend the continuation when evaluating an argument sub-expression, instead of when calling a function. In
particular, function calls in tail position require no extension of the continuation. One result is that we can
write “loops” using λ and application, instead of a special for form.

In considering the implications of tail calls, we saw that some non-loop expressions can be converted to
loops. For example, the Scheme program

(define (sum n)
(if (zero? n)

0
(+ n (sum (sub1 n)))))

(sum 1000)

requires a control stack of depth 1000 to handle the build-up of additions surrounding the recursive call to
sum, but

(define (sum2 n r)
(if (zero? n)

r
(sum2 (sub1 n) (+ r n))))

(sum2 1000 0)

computes the same result with a control stack of depth 1, because the result of a recursive call to sum2
produces the final result for the enclosing call to sum2 .

Is this magic, or is sum somehow special? The sum function is slightly special: sum2 can keep an
accumulated total, instead of waiting for all numbers before starting to add them, because addition is
commutative.

In contrast, consider a make-list function, which takes a positive integer n and creates a list enumerating
the integers from n to 1:

(define (make-list n)
(if (zero? n)

’()
(cons n (make-list (sub1 n)))))

(make-list 1000)

In this case, if we try to accumulate a result as we did for sum,

(define (make-list2 n r)
(if (zero? n)

r
(make-list2 (sub1 n) (cons n r))))

(make-list2 1000 ’())
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we get a different result: the list will be in reverse order (i.e., 1 to n). The underlying reason is that cons is
not commutative.

We could avoid this problem by creating a function snoc to take the place of cons: instead of adding to
the front of the list, snoc will add to the end:

(define (snoc i l)
(if (null? l)

(cons i ’())
(cons (car l) (snoc i (cdr l)))))

But we haven’t achieved anything useful, because snoc onto a list of 999 elements requires a control stack of
depth 999.

It turns out to be possible to implement make-list (or snoc) in a purely functional style with a control
stack of depth 1. The key is to accumulate something different than a list — something that is not quite the
result, but that produces the result when needed.

2 Accumulating a Continuation

The following variation of make-list produces the same result as the original, but without using a deep
control stack:

(define (make-list3 n k)
(if (zero? n)

(k ’())
(make-list3 (sub1 n) (lambda (l) (k (cons n l))))))

(make-list3 1000 (lambda (l) l))

The accumulator argument k does not accumulate the final result. Instead, it accumulates work to do to
produce the final result given an “almost final” result. More precisely, k is a function that takes the list that
make-list3 would otherwise return, and does something to it to get the real final result.

Thus, the base case in make-list3 , where n is 0, applies k to the empty list instead of returning the result.
And the last line of the program, which calls make-list3 with 1000, provides a k that simply returns the
result list.

The key use of k is in the recursive call to make-list3 . In that case, the recursive call receives a function
that consumes the result for n − 1, then adds an n to the front. With n added to the front, the result is
what make-list would have produced, but instead of returning this result directly, the result is provided to
k .

In the above program, every call to a non-primitive is in a tail position in the above program. Thus,
we need only one control-stack frame to take care of primitive applications in argument positions. Have we
changed an O(n) program into an O(1) program? No: although we use O(1) space in the control stack, the
k argument will grow on every recursive call:

(make-list3 1000 (lambda (l) l))
⇒ (make-list3 999 (lambda (l) ((lambda (l) l) (cons 1000 l))))
⇒ (make-list3 998 (lambda (l) ((lambda (l) ((lambda (l) l) (cons 1000 l))) (cons 999 l))))
⇒ . . .
⇒ (make-list3 0 (lambda (l) (. . . [999 to 2]. . . (cons 1 l))))
⇒ ((lambda (l) (. . . [999 to 2]. . . (cons 1 l))) ’())
⇒ (. . . [999 to 2]. . . (cons 1 ’()))
⇒ . . .

In fact, k is nothing but the continuation in procedure form! Consequently, it grows on each recursive call
in the same way that the control stack used to grow.
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3 Continuation-Passing Style

If every program were like sum2 or make-list3 , then an evaluator for ISWIM would not need a continuation
register at all. By “like sum2 or make-list3 ”, we mean that every function call is in tail position. (Nested
primitive operations generate frames in the CEK machine, but the “stack” size for such frames is always
limited by the size of the program, and this limit enables an efficient implementation along the lines of the
SECD machine.)

The conversion of make-list to make-list3 points to a general conversion strategy for all programs. The
result of the conversion is a program in continuation-passing style (CPS), which means that the contin-
uation is effectively passed through the program in the form of a procedure argument. More specifically,
in a CPS program, each function consumes an extra argument for the continuation, and the function never
returns a result directly; instead, it supplies a result to the continuation. Finally, CPS conversion eliminates
all nested function calls, so that the continuation argument for a function truly represents the continuation
of the function call.

A CPS conversion might be used by a compiler front end to simplify the compiler back end and run-
time system. Depending on the application of CPS, it has another advantage: by making the continuation
explicit, a program explicitly drop it or use it multiple times. For example, without using an error function,
we can escape immediately from a list creation in the innermost part of a CPS recursion:

(define (dont-make-list n k)
(if (zero? n)

’boom
(dont-make-list (sub1 n) (lambda (l) (k (cons n l))))))

(dont-make-list 1000 (lambda (l) l))

This example demonstrate how we can encode control operations without extending the underlying language.
Informally, to convert a program to CPS:

1. Add an extra argument k to each function.

2. Instead of returning a result in a function, pass the result to k .

3. Lift a nested function call out of its sub-expression by selecting a variable X to replace the function
call, wrapping the expression with (lambda (X ) . . . ), and providing the resulting (lambda X ) as
the third argument to the function. For example, convert (add1 (f x )) to (f x (lambda (v) (add1 v))).
Applications of primitive operations need no lifting.

Applying these rules to make-list produces make-list3 . Here is a more complex source example, the map
function that takes a function and a list and produces a new list by applying the function to each element
of the given list:

(define (map f l)
(if (null? l)

’()
(cons (f (car l)) (map f (cdr l)))))

The CPS conversion proceeds as follows:

• Add a k argument to map2 :

(define (map2 f l k)
(if (null? l)

’()
(cons (f (car l)) (map2 f (cdr l)))))

• Pass results to k instead of returning them directly:

3



(define (map2 f l k)
(if (null? l)

(k ’())
(k (cons (f (car l)) (map2 f (cdr l))))))

• Lift the (f (car l)) nested call:

(define (map2 f l k)
(if (null? l)

(k ’())
(f (car l) (lambda (v) (k (cons v (map2 f (cdr l))))))))

• Lift the (map2 f (cdr l)) nested call:

(define (map2 f l k)
(if (null? l)

(k ’())
(f (car l) (lambda (v) (map2 f (cdr l) (lambda (v2 ) (k (cons v v2 ))))))))

Note that the kind of function expected by map2 for f is one that accepts a continuation argument in
addition to a list element. In general, a CPS conversion changes the meaning of “function” globally so that
every function consumes a continuation.

So far, we have been vague about the meaning of “nested”. After all, (f (car l)) is nested in the definition
as a whole, but we do not want to lift it out of the definition. Similarly, we did not want to lift (f (car l))
out of the if expression. However, in the following program, we do want to lift (f (car l)) out of the second
if:

(define (filter f l)
(if (null? l)

’()
(if (f (car l))

(cons (car l) (filter f (cdr l)))
(filter f (cdr l)))))

In the properly CPS-converted version, we expose the fact that the if branch is in the continuation of the (f
(car l)) call:1

(define (filter2 f l k)
(if (null? l)

(k ’())
(f (car l)

(lambda (v)
(if v

(filter2 f (cdr l) (lambda (v2 ) (cons (car l) v2 )))
(filter2 f (cdr l) (lambda (v2 ) (k v2 ))))))))

In general, we lift application expressions out of other applications, out of primitive operations, and out of
the test position of if. We do not lift past lambda (including the implicit one with define) or past the
branches of an if expression. In addition, we perform lifting from left-to-right, which introduces lambda
that prevent changes to the order of evaluation. For example, lifting (f (car l)) prevents (map2 f (cdr l))
from being lifted out into an earlier evaluation position.

1To simplify, (lambda (v2 ) (k v2 )) could be replaced with k .
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3.1 Exercise

Convert the following Scheme program to CPS, where number?, +, cons, car, and cdr are treated as primitive
operations.

(define (sum-tree stop? t)
(if (stop? t)

t
(+ (sum-tree stop? (car t)) (sum-tree stop? (cdr t)))))

(sum-tree (lambda (x ) (number? x )) (cons (cons 1 2) (cons 3 (cons 4 5))))

4 Formal CPS Conversion

To formally define a CPS conversion for ISWIM, we first define the set of “simple expressions”, S, which do
not include function applications. The set of simple expressions also does not include immediate functions
(i.e., λ expressions), because they will need to be converted to take a continuation argument.

S = b
| X
| (on S . . . S)

Given the definition of S, we can define a CPS-conversion relation [[ ]] • [[ ]] that maps a source expression
and continuation expression to a CPS-converted expression. For example, if the source expression is 4 and
the result of the program must is supplied to the continuation k, then

[[4]] • [[k]] = (k 4)

If the expression is (λy.y),
[[(λy.y)]] • [[k]] = (k (λyk.(k y)))

In converting a whole program M , we will find [[M ]]• [[(λx.x)]]. Note that, as a whole program, the converted
version of (λy.y) will produce a different kind of function than the original program, because they converted
identity function consumes a continuation. However, if we consider the results in terms of evalv, this difference
does not matter. Basic constant results are unchanged by the conversion.

The following table defines the [[ ]] • [[ ]] relation:

[[S]] • [[Mk]] = (Mk S)
[[(λX.M)]] • [[Mk]] = (Mk (λXX ′.[[M ]] • [[X ′]]))
[[(M1 M2)]] • [[Mk]] = [[M1]] • [[(λX1.[[(X1 M2)]] • [[Mk]])]]

if M1 6∈ S where X1 6∈ FV(M2) ∪ FV(Mk)
[[(S1 M2)]] • [[Mk]] = [[M2]] • [[(λX2.[[(S1 X2)]] • [[Mk]])]]

if M2 6∈ S where X2 6∈ FV(Mk)
[[(S1 S2)]] • [[Mk]] = (S1 S2 Mk)
[[(on S1 . . . Si−1 Mi Mi+1 . . . Mn)]] • [[Mk]] = [[Mi]] • [[(λXi.[[(on S1 . . . Si−1 Xi Mi+1 . . . Mn)]] • [[Mk]])]]

if Mi 6∈ S where Xi 6∈ FV(Mi+1) ∪ . . .FV(Mn) ∪ FV(Mk)

By looking at the right-hand sides of the definition, we can easily see that this conversion eliminates all
nested function calls. We would also like to know that

evalv(M) = evalv([[M ]] • [[(λx.x)]])

but this fact is difficult to prove.
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