
Mid-Term Exam 2

CS 3520, Fall 2005

(take-home, but Fall 2007 exam will be in-class)

Name:

Start time:
End time:

Instructions: You have ninety minutes to complete this open-book, open-note, closed-computer, take-home
exam. Please write you start and finish times above, and write all answers in the provided space, plus the
back of the exam if necessary. The Fall 2007 Mid-Term 2 exam will be in-class.

1) Which of the following produce different results in a call-by-value language and a call-by-name lan-
guage? Both produce the same result if they both produce the same number or they both produce a
procedure (even if the procedure doesn’t behave exactly the same when applied).

a) {{fun {y} 12} {1 2}}

b) {fun {x} {{fun {y} 12} {1 2}}}

c) {+ 1 {fun {y} 12}}

d) {+ 1 {{fun {x} {+ 1 13}} {+ 1 {fun {z} 12}}}}

e) {+ 1 {{fun {x} {+ x 13}} {+ 1 {fun {z} 12}}}}

1



2) The following web servlet implementation (main handler plus helper function) uses web-read, which
takes only a prompt and uses let/cc internally to obtain a continuation. Convert the servlet (both
functions) to instead use web-read/k, which takes a prompt and an explicit continuation procedure
(and does not use let/cc internally). You should assume that the correct-password? function
requires no interaction with the user. The Fall 2007 version of this question will be more
difficult.

(define (pw-handler base args)
(get-pw (web-read "Name")))

(define (get-pw name)
(local [(define pw (web-read "Password"))]
(if (correct-password? name pw)

(format "Hello, ~a" name)
(get-pw name))))

2



3) Given the following expression:

{{fun {x} {x x}}
{fun {y} 12}}

Describe a trace of the evalaution in terms of arguments to interp and continue functions for every
call of each. (There will be 7 calls to interp and 5 calls to continue.) The interp function takes
three arguments — an expression, a substitution cache, and a continuation — so show all three for each
interp call. The continue function takes two arguments — a value and a continuation — so show
both for each continue call. Represent continuations using records. The Fall 2007 version of this
question will involve the store-passing interpreter of HW6 instead of the interp–continue
interpreter. The trace will be shorter than in Mid-Term 1.

3



4) Suppose a garbage-collected interepreter uses the following three kinds of records:

– Tag 1: a record containing two pointers

– Tag 2: a record containing one pointer and one integer

– Tag 3: a record containing one integer

The interpreter has one register, which always contains a pointer, and a memory pool of size 22. The
allocator/collector is a two-space copying collector, so each space is of size 11. Records are allocated
consecutively in to-space, starting from the first memory location, 0.

The following is a snapshot of memory just before a collection where all memory has been allocated:

– Register: 8

– To space: 1 3 8 3 0 2 3 7 2 0 8

What are the values in the register and the new to-space (which is also addressed starting from 0) after
collection? Assume that unallocated memory in to-space contains 0.

– Register:

– To space:

4



Answers

1) a and d.

2) (define (pw-handler base args)
(web-read/k "Name" get-pw))

(define (get-pw name)
(web-read/k "Password"

(lambda (pw)
(if (correct-password? name pw)

(format "Hello, ~a" name)
(get-pw name)))))

3)

interp expr = {{fun {x} {x x}} {fun {y} 12}}
subs = (mtSub)
k = (mtK)

interp expr = {fun {x} {x x}}
subs = (mtSub)

k = (appArgK {fun {y} 12} (mtSub) (mtK))

cont val = (closureV ’x {x x} ) = v1

k = (appArgK {fun {y} 12} (mtSub) (mtK))

interp expr = {fun {y} 12}
subs = (mtSub)
k = (doAppK v1 (mtK))

cont val = (closureV ’y 12 ) = v2

k = (doAppK v1 (mtK))

interp expr = {x x}
ds = (aSub ’x v2 (mtSub)) = ds1

k = (mtK)

interp expr = x
ds = ds1

k = (appArgk x ds1 (mtK))

cont val = v2

k = (appArgK x ds1 (mtK))

interp expr = x
ds = ds1

k = (doAppK v2 (mtK))

cont val = v2

5



k = (doAppK v2 (mtK))

interp expr = 12
ds = (aSub ’y v2 (mtSub))
k = (mtK)

cont val = (numV 12)
k = (mtK)

4) Register: 0, To space: 2 3 8 1 6 0 3 0 0 0 0

6


