Allocation

Constructor calls are allocation:

, interp : -> void
(define (interp)
(type-case CFAE fae-reg

[cfun (body-expr)
(begin
(set! v-reg (closureV body-expr ds-reg))
(continue))]

)

* continue : -> void
(define (continue k v)

[addSecondK (r ds k)
(begin
(set! fae-reg r)
(set! sc-reg ds)
(set! k-reg (doAddK v-reg k))
(interp))]

Deallocation

Where does f r ee go?

, continue : -> void
(define (continue)

[doAddK (v1 k)
(begin
(set! v-reg (numt vl v-req))
(free k-reg) ; ???
(set! k-reg k)
(continue))]

[doAppK (fun-val k)
(begin
(set! fae-reg (closureV-body fun-val))
(set! ds-reg (cons v-reg
(closureV-ds fun-val)))
(set! k-reg k)
(free fun-val) ; ?7?7?
(interp))]

Deallocation

[doAddK (v1 k)
(begin
(set! v-reg (num+ vl v-req))
(free k-reg) ; 27?7
(set! k-reg k)
(continue))|]

 Without w t hcc, this free Is fine, because the continuation can't be
referenced anywhere else

o A continuation record is always freed as (free k-reg), whichis
why most languages use a stack

Deallocation

[doAppK (fun-val k)
(begin
(set! fae-reg (closureV-body fun-val))
(set! ds-reg (cons v-reg
(cl osureV-ds fun-val)))
(set! k-reg k)
(free fun-val) ; ?7??
(interp))]

* This free is not ok, because the closure might be kept in a
substitution somewhere

* Need to free only if no one else is using it...

Reference Counting

Reference counting: a way to know whether a record has other
users

 Attatch a count to every record, starting at 0

 When installing a pointer to a record (into a register or another
record), increment its count

 When replacing a pointer to a record, decrement its count

 When a count is decremented to 0, decrement counts for other
records referenced by the record, then free it

5-6

Reference Counting

Top boxes are the registers
fae-reg, k-reg, etc.

Boxes in the blue area are
allocated with mal | oc

Reference Counting

‘ Adjust counts when a pointer
- IS changed...
1
.
3
-

Reference Counting

.

... freeing a record if its count
goesto O

Reference Counting

.

Same if the pointerisin a
register

10

Reference Counting

.

Adjust counts after frees, too...

11

Reference Counting

.

... which can trigger more frees

12

Reference Counting in FAE

[cfun (body-expr)

(begin
(ref- v-
(set! v-
(ref+ v-

reg)
reg (closureV body-expr ds-req))

reqg)

(continue))]

tabAppK (fun-val k)

(begin
(set!
(ref-
(set!
(ref+
(ref+
(ref-
(set!

fae-reg (closureV-body fun-val)) ; code is static
ds-reqQ)
ds-reg (cons v-reg (closureV-ds fun-val)))

ds-reqg) ; =>ref+ on v-reg and closure's ds
k)

k-reg) ; =>ref- on fun-val and k

k-reg k)

(interp))]

13

Reference Counting And Cycles

.

An assignment can create a
cycle...

14

Reference Counting And Cycles

.

Adding a reference increments
a count

15

Reference Counting And Cycles

.

Lower-left records are
Inaccessible, but not
deallocated

In general, cycles break
reference counting

16

Garbage Collection

Garbage collection: a way to know whether a record is accessible

o Arecord referenced by a register is live

« Arecord referenced by a live record is also live

e A program can only possibly use live records, because there is no
way to get to other records

« A garbage collector frees all records that are not live

 Allocate until we run out of memory, then run a garbage collector to
get more space

17-19

Garbage Collection Algorithm

e Color all records white

« Color records referenced by registers gray

* Repeat until there are no gray records:
© Pick a gray record, r
© For each white record that r points to, make it gray
© Color r black

e Deallocate all white records

20

Garbage Collection

All records are marked white

21

Garbage Collection

.

Mark records referenced by
registers as gray

22

Garbage Collection

.

Need to pick a gray record

Red arrow indicates the
chosen record

23

Garbage Collection

.

Mark white records referenced
by chosen record as gray

24

Garbage Collection

.

Mark chosen record black

25

Garbage Collection

.

Start again: pick a gray record

26

Garbage Collection

.

.

-

No referenced records; mark
black

27

Garbage Collection

.

.

Start again: pick a gray record

28

Garbage Collection

.

.

Mark white records referenced
by chosen record as gray

29

Garbage Collection

Mark chosen record black

e

30

Garbage Collection

.

Start again: pick a gray record

31

Garbage Collection

—

.
.
-

No referenced white records:
mark black

32

Garbage Collection

®

No more gray records;
deallocate white records

Cycles do not break garbage
collection

33

Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects,
making allocation easier.

Allocator:
e Partitions memory into to-space and from-space
» Allocates only in to-space

Collector:
o Starts by swapping to-space and from-space

« Coloring gray = copy from from-space to to-space

« Choosing a gray record = walk once though the new to-space,
update pointers

34

Two-Space Collection

L

Left = from-space
Right = to-space

35

Two-Space Collection

—

S |

Mark gray = copy and leave
forward address

—

| —
P

36

Two-Space Collection

—

S |

Choose gray by walking
through to-space

—

| —
P

37

Two-Space Collection

/

Mark referenced as gray

=

—>

\

N\ /

/A

<

y

™~

R

/

|7
~

38

Two-Space Collection

Mark black = move
gray-choosing arrow

A

-

s

39

Two-Space Collection

Nothing to color gray;
Increment the arrow

A
B

-

40

Two-Space Collection

Color referenced record gray

\\‘
—
\\\ - / ~
N
\ \/ o -
b

41

Two-Space Collection

Increment the gray-choosing

arrow

A

-

42

Two-Space Collection

Referenced is already copied,
use forwarding address

j _
L

-

— —

Two-Space Collection

Choosing arrow reaches the
end of to-space: done

j _
L

-

R

Two-Space Collection

Right = from-space

\ Left = to-space

IR

-

]

-

45

Two-Space Collection on Vectors

e Everything is a number:
© Some numbers are immediate integers
© Some numbers are pointers

* An allocated record in memory starts with a tag, followed by a
sequence of pointers and immediate integers

© The tag describes the shape

46

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0
From;: 175 2 0 3 210 3 2 2 3 1 4

47

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From;: 175 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

48

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From;: 175 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
N\

N\ N\ N\ N\

49

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From;: 175 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
N\

N\ N\ N\ N\

To: o 0o 0o 0o 0 06 06 0 O O O O0O O

N\

50

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 0

From;: 175 2 0 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
N\

N\ N\ N\ N\

To: 3 2 2 0 0 0 0 0 O O O 0 O

N\

51

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 2 0 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

N\ N\ N\ N\ N\

To: 3 2 2 17/5 0 O O O O O O O

N\

52

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 399 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

N\ N\ N\ N\ N\

To: 3 2 5 17/5 2 0 0 0 O O 0 O

N

53

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 399 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
N\

N\ N\ N\ N\

To: 3 2 5 17/5 2 0 0 0 O O 0 O

N

Two-Space Vector Example

« 26-byte memory (13 bytes for each space), 2 registers
© Tag 1: one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 399 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
N\

N\ N\ N\ N\

To: 3 2 5 175 2 3 0 0 O O 0 O

N\

55

