NATIONAL BESTSELLER

“Funny, charming . . . will steal readers
spare hours as they find themselves
unable to put it down.” | it

Time stops for no one . . . until now, that s

Page 1

A ccording to the First Scroll of Wen the Eternally Sur-
prised, Wen stepped out of the cave where he had received
enlightenment and into the dawning light of the first day of
the rest of his life. He stared at the rising sun for some time,
because he had never seen it before.

He prodded with a sandal the dozing form of Clodpool
the Apprentice, and said: “I have seen. Now I understand.”

Then he stopped and looked at the thing next to Clodpool.

“What is that amazing thing?"” he said.

“Er...er...it's a tree, master,” said Clodpool, still not
quite awake. “Remember? It was there yesterday.”

“There was no yesterday.”

“Er...er...]I think there was, master,” said Clodpool,
struggling to his feet. “Remember? We came up here, and |
cooked a meal, and had the rind off your sklang because you
didn’t want it.”

“I remember yesterday,” said Wen, thoughtfully. “But the
memory is in my head now. Was yesterday real? Or is it only
the memory that is real? Truly, yesterday [was not born.”

Clodpool’s face became a mask of agonized incompre-
hension.

“Dear stupid Clodpool, I have learned everything,” said
Wen. “In the cup of the hand there is no past, no future.
There is only now. There is no time but the present. We have
a great deal to do.”

Page 27

The first question they ask is: “Why was he etemally
surprised?”

And they are told: “Wen considered the nature of time and
understood that the universe is, instant by instant, re-created

anew.| Therefore, he understood, there is, in truth, no Past,

only a memory of the Past. Blink your eyes, and the world
you see next did not exist when you closed them. Therefore,
he said, the only appropriate state of the mind is surprise.
The only appropriate state of the heart is joy. The sky you
see now, you have never seen before. The perfect moment is
now. Be glad of it.”

Store-Passing Interpreters

Our BCFAE interpreter explains state by representing the store as a
value

« Every step in computation produces a new store

* The interpreter itself is purely functional

It's a store-passing interpreter

Variables

Boxes don't explain one of our earlier Scheme examples:

(define counter 0)
(define (f x)

(begin
(set! counter (+ x counter))
counter))

In a program like this, an identifier no longer stands for a value;
Instead, an identifier stands for a variable

Implementing Variables

Option 1.

(define counter 0)
(define (f x)
(begin
(set! counter (+ X counter))
counter))
(f 10)

[] (define counter (box 0))
(define (f x)
(begin
(set-box! counter (+ (unbox x)
(unbox counter)))
(unbox counter)))
(f (box 10))

Option 2:

« Essentially the same, but hide the boxes in the interpreter

6-7

<BMCFAE>

BMCFAE = BCFAE + variables

<nunp

{+ <BMCFAE> <BMCFAE>}

{- <BMCFAE> <BMCFAE>}

<| d>

{fun {<id>} <BMCFAE>}

{ <BMCFAE> <BMCFAE>}

{1 f0 <BMCFAE> <BMCFAE> <BMCFAE>}
{ newbox <BMCFAE>}

{ set box <BMCFAE> <BMCFAE>}

{ openbox <BMCFAE>}

{seqn <BMCFAE> <BMCFAE>}

{set <id> <BMCFAE>} e

Implementing Variables

(defi ne-type DefrdSub
[nt Sub]
[aSub (name synbol ?)
(address i nteger?)
(ds DefrdSub?)])

Implementing Variables

interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)

[1d (nanme) (v*s (store-lookup (|l ookup nane ds) st)

st)]
)

10

Implementing Variables

; interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)

[app (fun-expr arg-expr)
(interp-two fun-expr arg-expr ds st
(l anbda (fun-val arg-val st)
(local [(define a (nmalloc st))]
(interp (closureV-body fun-val)

(aSub (cl osureV-param fun-val)
a
(cl osureV-sc fun-val))

(aSto a
ar g- val

st)))))]

11-16

Implementing Variables

interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)

[set (id val-expr)
(local [(define a (lookup id ds))]
(type-case Store*Value (interp val -expr ds st)
[v*s (val st)
(v*s val
(aSto a
val

st))]))]

17-20

Variables and Function Calls

(define (swap x V)
(local [(define z vy)]
(set! y x)
(set! x z)))

(local [(define a 10)
(define b 20)]
(begin
(swap a b)
a))

Result is 10; assignment in swap cannot affect a

21-22

Call-by-Reference

What if we wanted swap to change a?

(define (swap x vy) [] (define (swap x V)
(local [(define z vy)] (local [(define z (box (unbox y)))]
(set! y Xx) (set-box! y (unbox x))
(set! x z))) (set-box! x (unbox z))))
(l ocal [(define a 10) (local [(define a (box 10))
(define b 20)] (define b (box 20))]
(begin (begin
(swap a b) , (swap (box (unbox a))
a)) ; (box (unbox b)))
(swap a b)

(unbox a)))

This is called call-by-reference, as opposed to call-by-value

Terminology alert: this “call-by-value” is orthogonal to the use in
“call-by-value” vs. “call-by-name”

23

Implementing Call-by-Reference

; interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)

[app (fun-expr arg-expr)
(i1f (1d? arg-expr)
, call-by-ref handling for id arg:
(type-case Value*Store (interp fun-expr ds st)
[v*s (fun-val st)
(local [(define a
(1 ookup (id-nanme arg-expr) ds))]
(itnterp (closureV-body fun-val)
(aSub nane
a
(closureV-sc fun-val))

st))])

. as before:

o]

24

