
Processes

Creating processes

• Unix: fork() + exec()

• Windows: CreateProcess()

Detecting process termination

• Unix: wait()

• Windows: GetExitCodeProcess()

Today: process communication

1

Starting A Processes

fork.c

fork_parent.c and fork_child.c

2

Process Control

• What happens if a parent exits before a child?

• Can a process terminate another process?

• Who cleans up?

3

Communication

How can processes communicate?

• Command-line arguments

• Files

• Pipes

• Sockets

• Messages

• Shared memory

4-5

File Descriptors

fgets(buffer, n, stdin)

⇒ read(0, buffer, n)

printf("hi")

⇒ write(1, "hi", 2)

fprintf(stderr, "hi")

⇒ write(2, "hi", 2)

6

File Descriptors

fd

0
fd

1
fd

2
process

OS

7

File Descriptors

fd

0
fd

1
fd

2
fd

0
fd

1
fd

2
process

OS

18

Pipes

int fds[2];
pipe(fds);

fd

7
fd

8
process

OS

19

Pipes

int fds[2];
pipe(fds);

fd

7
fd

8
fd

7
fd

8
process

OS

30

Pipes

int fds[2];
pipe(fds);

fd

8
fd

7
process

OS

41

Using Pipes

pipe() and dup2():

pipe_parent.c and pipe_child.c

42

Buffering

Beware of pipe buffer limits

echo_parent.c and echo_child.c

43

Message Passing

main() {
 ...
 q_id = msgget();
 if (fork() != 0)
 producer();
 else
 consumer();
}

producer() {
 while (1) {
 ...

 produce item nextp
 ...
 msgsnd(q_id, nextp);
 }
}

consumer() {
 while (1) {
 msgrcv(q_id, nextp);
 ...

 consume item nextp
 ...
 }
}

can also use msgtok(ftok()) after fork()
44

Message Passing vs. Pipes

Can you build message passing on top of pipes?

45

Shared Memory

main() {
 ...
 buffer = shmget();
 if (fork() != 0)
 producer();
 else
 consumer();
}

producer() {
 while (1) {
 ...

 produce item nextp
 ...
 while (((in+1) % n) == out);
 buffer[in] = nextp;
 in = (in+1) % n;
 }
}

consumer() {
 while (1) {
 while (in == out);
 nextp = buffer[in];
 out = (out+1) % n;
 ...

 consume item nextp
 ...
 }
}

can also use shmget(ftok()) after fork()

Lots of problems with this code...
46-47

Shared Memory vs. Message Passing vs. Pipes

Can you build shared memory on message
passing?
On pipes?

How about the other direction?

48-49

Etc.

• Direct vs. indirect messages

• Sockets

• RPC

50

From Processes Threads

For processes to cooperate:

• Create several processes

• Arrange a way to share data

• Context switch back and forth between the
processes

Unfortunately, these operations are relatively
inefficient for the machine and inconvenient for
programmers.

51-52

From Processes Threads

What is shared between processes?

• Code is shared if we never call exec()

• Data is shared since that’s the point

• Privileges are shared

• Resources are shared (open files and sockets)

What is not shared?

• Execution state: PC, SP, registers

53-54

Threads

Key idea: Separate the concept of a process from
its execution context.

• Process: address space, privileges, kernel
resources

• Thread: execution state (PC, SP, registers)

55

Processes and Threads

56

Threads

• Every thread belongs to a particular process

• Processes are like containers that can hold many
threads (and all threads die when their process
exits)

• Threads are the unit of CPU scheduling

• Switching between threads in the same process is
more efficient than switching between processes

57

Kernel vs. User Threads

• A kernel thread is a thread that the OS knows
about

a.k.a. lightweight process

OS schedules threads instead of processes

• A user thread is a thread that the OS doesn’t
know about

Faster and more flexible in principle

Not in parallel, problems with blocking system
calls

• A mixture ⇒ many-to-many models

58

User Threads

59

Kernel Threads

60

Using Threads

item buffer[n];

main() {
 ...
 pthread_create(producer);
 consumer();
}

producer() {
 while (1) {
 ...

 produce item nextp
 ...
 while (((in+1) % n) == out);
 buffer[in] = nextp;
 in = (in+1) % n;
 }
}

consumer() {
 while (1) {
 while (in == out);
 nextp = buffer[in];
 out = (out+1) % n;
 ...

 consume item nextp
 ...
 }
}

61

Threads for Now

For now, it’s enough to know that threads exist.

Later, we’ll get back to this topic, along with the
synchornization tools that you need to make it work.

62

New Homework

HW2:

Implement a simple Unix shell

63

