Processes

Creating processes
e Unix: fork() +exec()

 Windows: Cr eat eProcess()

Detecting process termination
e Unix:wai t ()

* Windows: Get Exi t CodePr ocess()

Today: process communication

Starting A Processes

fork.c

fork parent.candfork child.c

Process Control

 What happens if a parent exits before a child?
e Can a process terminate another process?

 Who cleans up?

Communication

How can processes communicate?
« Command-line arguments

e Files

* Pipes

e Sockets

 Messages

e Shared memory

45

File Descriptors

fgets(buffer, n, stdin)
[J read(0, buffer, n)

printf("hi")

Owite(l, "hi", 2)

fprintf(stderr, "hi")
Owite(2, "hi", 2)

File Descriptors

process fd fd
0 1
A Y

OS

File Descriptors

process fd fd fd fd fd fd
0 1 2 0 1 2
A Y Y ¢ Y Y
e
0S : r— — W,

18

Pipes

| nt fds[2];

pi pe(fds);
processfd fd
! 8
A Y

OS

19

Pipes

I nt fds[2];
pi pe(fds);
7 8 7 8
A Y ¢ Y
_/

= L)

30

Pipes

I nt fds[2];
pi pe(fds);
processfd id
/ 8
A Y
_/

OS \\~__—//’f

41

Using Pipes

pi pe() and dup2():

pi pe_parent.c andpi pe child.c

42

Buffering

Beware of pipe buffer limits

echo _parent.c andecho _child.c

43

Message Passing

mai n() {

q_id = nmsgget();
i f (fork() !'= 0)
producer () ;

el se

consuner () ;

producer () { consuner () {
while (1) { while (1) {
- nsgrcv(qg_id, nextp);
produce item next p C
- consume item next p
msgsnd(q_i d, nextp); -
} }
} }

can also use nsgt ok(ftok()) afterfork()

Message Passing vs. Pipes

Can you build message passing on top of pipes?

45

Shared Memory

mai n() {

buffer = shnget();
if (fork() !'= 0)
producer () ;
el se
consuner () ;

}
producer () { consumer () {
while (1) { while (1) {
C while (in == out);
produce item next p nextp = buffer[in];

while (((in+l) %n) == out):

out = (out+1l) % n;

buffer[in] = nextp; consume item next p

in = (in+l)

% n; -
}
}

can also use shnget (ft ok()) afterf or k()

Lots of problems with this code...

46-47

Shared Memory vs. Message Passing vs. Pipes

Can you build shared memory on message
passing?
On pipes?

How about the other direction?

48-49

Etc.

 Direct vs. indirect messages
e Sockets

« RPC

50

From Processes Threads

For processes to cooperate:
» Create several processes
e Arrange a way to share data

e Context switch back and forth between the
processes

Unfortunately, these operations are relatively
Inefficient for the machine and inconvenient for
programmers.

51-52

From Processes Threads

What is shared between processes?

e Code Is shared if we never call exec()
« Data is shared since that’s the point

* Privileges are shared

 Resources are shared (open files and sockets)

What is not shared?

 Execution state: PC, SP, registers

53-54

Threads

Key idea: Separate the concept of a process from
Its execution context.

* Process: address space, privileges, kernel
resources

 Thread: execution state (PC, SP, registers)

55

Processes and Threads

CD_ Thread — —
@) @)
CD_ Y T Add
(D_ (D_ Threads
MS/DOS, small embedded systems UNIX

EEERCENEEE

29] | ey

Real-Time OSs, Xerox Pilot, Java Mach (Mac O§ X), BeOS,
Windows 2000, Linux

-

Add Processes

56

Threads

» Every thread belongs to a particular process

* Processes are like containers that can hold many
threads (and all threads die when their process
exits)

* Threads are the unit of CPU scheduling

e Switching between threads in the same process is
more efficient than switching between processes

57

Kernel vs. User Threads

e A kernel thread is a thread that the OS knows
about

o a.k.a. lightweight process

© OS schedules threads instead of processes
« A user thread is a thread that the OS doesn't
know about
o Faster and more flexible in principle
2 Not in parallel, problems with blocking system

calls

e A mixture [many-to-many models

58

User Threads

Thread Ready Thread Ready
Queue Current Thread for each Process Queue

A Tk

User User—Level Thread Scheduler

kema (D (O O

Kernel Processes

\ OO

Process Ready Queue

59

Kernel Threads

2\ [2

€4 (D () |User Threads
79 QB

TT T T TOT T @Uwﬁ?z;ﬂs

:L Kernel

O Lightweight process

(D_ Thread

Using Threads

i tem buffer[n];

mai n() {

consuner () ;

}

pt hread _creat e(producer);

producer () {
while (1) {

produce item next p
while (((in+l) %n) == out);

buffer[in] = nextp;
in = (|n+l) % n;

consuner () {
while (1) {
while (in == out);

nextp = buffer[in];

out = (out+l) % n;

consume item next p

61

Threads for Now

For now, it's enough to know that threads exist.

Later, we’ll get back to this topic, along with the
synchornization tools that you need to make it work.

62

HW?2:

New Homework

Implement a simple Unix shell

63

