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PC Port Addresses

|/O address range (hexadecimal)

device

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF

serial port (primary)




Programmed |I/O (P10O) with Polling

e Use QUT instruction to make a device request

e Loop using | N until the result comes back

Port usually has at least 4 registers:

e Status — written by device, read by CPU

e Control — written by CPU, read by device

e Data-in — data sent from the device to the CPU

 Data-out — data sent from the CPU to the device



Devices

A From the docs for a PS/2 mouse interface controller:

Read status register. If Data Pending bit is set, read
data register, store the value (it may be required by
handler software). Repeat until Data Pending bit is not
set for more than 2ms, or more than 16 bytes have
been read. Also check Active bit during this procedure:
If no data is pending, check active. If active is not set,
proceed with initialize, if active is set, timeout after
32ms. Always read pending data in this procedure!
Quick end of this procedure: If chip is not active, data is
not pending, and both PS2DAT and PS2CLK are set,
the bus is idle. Proceed with initialize in this case.



Using Interrupts
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Interrupt Vector

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check

19-31 (Intel reserved, do not use)
32-255 maskable interrupts
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Direct-Memory Access (DMA)

1. device driver is told

to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
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us
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Implementing 1/O
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Application Interface

» Afile descriptor can be
o Afile
° A pipe
© A network connection

o Other device: a terminal, / dev/ nul |

eread() andwite() work on all of them

* | seek() works on some of them

see byt e. c, bl ock. c
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Buffering vs. Interleaving

» Buffering allows more data per request
« Buffering can interfere with interactivity

o Interactivity = scheduling flexibility

see bl ock2. ¢
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/O Patterns

* blocking waits until I/O is available
* non-blocking returns, maybe did 1/O

e asynchronous returns, /O done meanwhile

see nonbl ock. ¢, nonbl ock2. ¢, t hread. c

seeas client.c,server.c
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Select

For non-blocking 1/O, sel ect () waits for I/O

 No timeout:; waits until I/O available from one
device

o Zero timeout: polls devices

see nonbl ock. c, server 2. c
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Synchronous vs. Asynchronous
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Asynchronous I/O

How do you know when asynchronous 1/O has
completed?

e Poll
e Callback

see async. c, async2. c
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Summary

e |/O Is slow
© Need to overlap computation and 1/O

© Need to balance buffering and interactivity

 Blocking, non-blocking, and asynchronous modes
© Blocking: use threads to overlap

© Non-blocking: need poll/walit operation like
sel ect ()

© Asynchronous: either poll/wait or callback
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