PC Architecture

2000

monitor processor
cache
graphics bridge/memory memory SCSI controller
controller controller
| PCI bus

IDE disk controller

@
@

expansion bus

@)
@

interface keyboard
{) expansion bus
parallel serial
port port

PC Port Addresses

|/O address range (hexadecimal)

device

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF

serial port (primary)

Programmed |I/O (P10O) with Polling

e Use QUT instruction to make a device request

e Loop using | N until the result comes back

Port usually has at least 4 registers:

e Status — written by device, read by CPU

e Control — written by CPU, read by device

e Data-in — data sent from the device to the CPU

 Data-out — data sent from the CPU to the device

Devices

A From the docs for a PS/2 mouse interface controller:

Read status register. If Data Pending bit is set, read
data register, store the value (it may be required by
handler software). Repeat until Data Pending bit is not
set for more than 2ms, or more than 16 bytes have
been read. Also check Active bit during this procedure:
If no data is pending, check active. If active is not set,
proceed with initialize, if active is set, timeout after
32ms. Always read pending data in this procedure!
Quick end of this procedure: If chip is not active, data is
not pending, and both PS2DAT and PS2CLK are set,
the bus is idle. Proceed with initialize in this case.

Using Interrupts

CPU

device driver initiates I/O

1/O controller

CPU executing checks for

interrupts between instructions

¥

initiates 1/0

CPU receiving interrupt,
transfers control to
interrupt handler

| s

input ready, output
complete, or error
generates interrupt signal

interrupt handler
processes data,
returns from interrupt

| s

CPU resumes
processing of
interrupted task

Interrupt Vector

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check

19-31 (Intel reserved, do not use)
32-255 maskable interrupts

PC Architecture

2000

monitor processor
cache
graphics bridge/memory memory SCSI controller
controller controller
| PCI bus

IDE disk controller

@
@

expansion bus

@)
@

interface keyboard
{) expansion bus
parallel serial
port port

Direct-Memory Access (DMA)

1. device driver is told

to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer EAChe
and decreasing C at address X
untilC =0 OMADDS)
us
6. when C = 0, DMA : — X
intermpis CRL tsiand égtrftrrrc:l:fetr + CPU memory bus —| memory | buffer
transfer completion
t PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller | 4. disk controller sends

L
SIS,

controller

each byte to DMA

Implementing 1/O

user

request VO process

system call

kernel
I/O subsystem

can already

/O completed,
input data available, or
output completed

ratumn from system call

satisty request?

transfer data
(if appropriate) to process,
return completion

es
y or efror code
F
send request to device
driver, block process it __ kemel
appropriate YO subsystem
process request, issue
commands to controller, dsvisa mg‘:‘;"t:;m"g m I{s?ata
cof Illgl.ll'B GOl‘IIJ‘OllBr to driver cha.rl 1o 'Uo Mbswm‘]
block until interrupted ge
F
Interrupt recefve interrupt, store
device-controller commands handier data in device-driver buffer
if input, signal to unblock
device driver
T
interrupt
device
monitor davice, controller
interrupt when 1/O i r?tran mﬁa'
completed gene rrupt
B
time v>

Application Interface

» Afile descriptor can be
o Afile
° A pipe
© A network connection

o Other device: a terminal, / dev/ nul |

eread() andwite() work on all of them

* | seek() works on some of them

see byt e. c, bl ock. c

10

Buffering vs. Interleaving

» Buffering allows more data per request
« Buffering can interfere with interactivity

o Interactivity = scheduling flexibility

see bl ock2. ¢

11

/O Patterns

* blocking waits until I/O is available
* non-blocking returns, maybe did 1/O

e asynchronous returns, /O done meanwhile

see nonbl ock. ¢, nonbl ock2. ¢, t hread. c

seeas client.c,server.c

12

Select

For non-blocking 1/O, sel ect () waits for I/O

 No timeout:; waits until I/O available from one
device

o Zero timeout: polls devices

see nonbl ock. c, server 2. c

13

Synchronous vs. Asynchronous

_
requesting process : 1
user < - requesting process user
—waiting—— 4 A g gp A
L J
4 N
device driver device driver
(. by
kernel < | v+ interrupt handler \ tinterrupt handler > kernel
i Vo
hardware hardware
— dlata transfer — --(data transfer —
\ S
time —> time —p

(@) (b)

Synchronous Asynchronous

14

Asynchronous I/O

How do you know when asynchronous 1/O has
completed?

e Poll
e Callback

see async. c, async2. c

15

Summary

e |/O Is slow
© Need to overlap computation and 1/O

© Need to balance buffering and interactivity

 Blocking, non-blocking, and asynchronous modes
© Blocking: use threads to overlap

© Non-blocking: need poll/walit operation like
sel ect ()

© Asynchronous: either poll/wait or callback

16

