
CS 5460/6460
Operating Systems

Fall 2009

Instructor: Matthew Flatt

TAs: Bigyan Mukherjee, Amrish Kapoor

1

Part I – Course Overview

2

Operating Systems

Application

OS API

Operating System

Hardware Interface

Hardware

3

Operating Systems

App App App

OS API

Operating System

Hardware Interface

Hardware

4

Operating Systems

App App App

OS API

Operating System

Hardware Interface

Hardware

memory, instructions,
interrupts, modes

5

Operating Systems

App App App

OS API

Operating System

devices, processes,
threads, virtual
memory

Hardware Interface

Hardware

memory, instructions,
interrupts, modes

6

Operating Systems

App App App

OS must coordinate

OS API

Operating System

devices, processes,
threads, virtual
memory

Hardware Interface

Hardware

memory, instructions,
interrupts, modes

7

Virtual Machines

Application

Language & libraries

Virtual Machine

OS API

Operating System

8

Virtual Machines

Application

Language & libraries

Virtual Machine

OS API

Operating System

devices, processes,
threads, virtual
memory

9

Virtual Machines

Application

Language & libraries

Virtual Machine

datatypes, garbage
collection, tasks

OS API

Operating System

devices, processes,
threads, virtual
memory

10

OS vs. Kernel

Operating System

Programming Language

11

OS vs. Kernel

Kernel System Apps
Operating System

Core Libraries
Programming Language

12

OS Design

• Convenience

• Performance

13

Why Study OS?

• Abstractions

Many tried and true constructs

• Know your tools

Driving a shell

Composing and controlling processes

• Know your environment

Space of possibilities for applications

Performance implications

• Build your own OS/VM?

14

Prerequisites

• CS 4400 really is a prerequisite

• C programming

• General familiarity with Unix-style OSes

15

Course Details

http://www.eng.utah.edu/~cs5460/

Expect about 5 C programming tasks as homework

16

Example Concepts

Services Processes
Threads CPU Scheduling
I/O Redirection Pipes
Concurrency Synchronization
Deadlock Memory Management
Paging Segmentation
Virtual Memory Page Replacement
File Systems I/O Systems
Distributed Systems Networks
RPC Distributed Filesystems
Security Embedded Systems

17

Part II – OS History

18

OS History

Phase 1: No or Minimal OS

Hardware: expensive Humans: cheap

• One user at a time on the console

• One function at a time (no overlap of computation
and I/O)

• User must be on the console to debug

19

OS History

Phase 2: Batch Processing

Hardware: expensive Humans: cheap

• Users give their program (on cards or tape) to a
human, who then schedules the jobs (e.g., Fortran
and Pascal programs)

• OS loads, runs, and dumps user jobs

• Batch processing makes better use of the
hardware, but debugging is much more difficult

20

OS History

Phase 3: Overlap of I/O and Computation

Hardware: expensive Humans: cheap

• Buffering and interrupt handling in OS

• Spool jobs on drum

• No protection ⇒ One job at a time

• Performance improves, because I/O and
processing happen concurrently

21

OS History

Phase 4: Memory Protection and Relocation

Hardware: expensive Humans: cheap

• Multiprogramming — several programs run at the
same time

• One job runs until it performs I/O, then another job
gets the CPU

• OS decides which spooled jobs to start, protects
one program’s memory from other programs,
decides which process to resume when one gives
up the CPU

First OS failures: Multics announced in 1963, released in 1969

OS/360 released with 1000 known bugs
22

OS History

Phase 5: Interactive Timesharing

Hardware: cheap Humans: expensive

• Terminals are cheap

All users interact with the system at once,
debugging becomes a lot easier, process
switching occurs much more frequently

• Memory is cheap — programs and data go on-line

• UNIX simplifies Multics so it can be built

• New OS services: shell, filesystems, rapid
process switching, virtual memory

New problems: response time & thrashing 23

OS History

Phase 6: Personal Computing

Hardware: very cheap Humans: expensive

• Computers are cheap, so put one in each terminal

• Make the OS simple (again) by getting rid of
support for multiprogramming, concurrency, and
protection...

Did not really work; e.g., Microsoft had to put
all this functionality back into its OS

With distributed computing & networking, we
still want to share resources, but now we want
to share across machines

24

OS History

Phase 7a: Parallelism

Hardware: very cheap Humans: expensive

• Increased processing demands lead to parallelism

• In parallel systems, multiple processors are in the
same machine, sharing memory, I/O devices,
clock, ...

• In distributed systems, multiple processor
communicate via network

Advantages: increased performance, increased
reliability, sharing of specialized resources

25

OS History

Phase 7b: Real-Time Systems

Hardware: very cheap Humans: expensive

• Computers control physical machines or provide
high-quality interaction

e.g., virtual reality

• Timing requirements provide deadlines by when
tasks must be accomplished

• Hard vs. soft real-time:

Hard real-time OS must meet timing
requirements (so omit features)

Soft real-time OS allows deadlines to be
missed 26

OS History

Phase 7c: Embedded Systems

Hardware: very, very cheap Humans: expensive

• Your car may have dozens of processors

• Severe processing constraints ⇒ no OS...

• Programmer creates own OS abstractions

27

History Conclusions

• Different environments demand different designs

• Many abstractions nevertheless work across
many environmets

28

