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OS Design

• Convenience

• Performance
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Why Study OS?

• Abstractions

Many tried and true constructs

• Know your tools

Driving a shell

Composing and controlling processes

• Know your environment

Space of possibilities for applications

Performance implications

• Build your own OS/VM?
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Prerequisites

• CS 4400 really is a prerequisite

• C programming

• General familiarity with Unix-style OSes
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Course Details

http://www.eng.utah.edu/~cs5460/

Expect about 5 C programming tasks as homework
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Example Concepts

Services Processes
Threads CPU Scheduling
I/O Redirection Pipes
Concurrency Synchronization
Deadlock Memory Management
Paging Segmentation
Virtual Memory Page Replacement
File Systems I/O Systems
Distributed Systems Networks
RPC Distributed Filesystems
Security Embedded Systems
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Part II – OS History
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OS History

Phase 1: No or Minimal OS

Hardware: expensive Humans: cheap

• One user at a time on the console

• One function at a time (no overlap of computation
and I/O)

• User must be on the console to debug
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OS History

Phase 2: Batch Processing

Hardware: expensive Humans: cheap

• Users give their program (on cards or tape) to a
human, who then schedules the jobs (e.g., Fortran
and Pascal programs)

• OS loads, runs, and dumps user jobs

• Batch processing makes better use of the
hardware, but debugging is much more difficult
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OS History

Phase 3: Overlap of I/O and Computation

Hardware: expensive Humans: cheap

• Buffering and interrupt handling in OS

• Spool jobs on drum

• No protection ⇒  One job at a time

• Performance improves, because I/O and
processing happen concurrently
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OS History

Phase 4: Memory Protection and Relocation

Hardware: expensive Humans: cheap

• Multiprogramming — several programs run at the
same time

• One job runs until it performs I/O, then another job
gets the CPU

• OS decides which spooled jobs to start, protects
one program’s memory from other programs,
decides which process to resume when one gives
up the CPU

First OS failures: Multics announced in 1963, released in 1969

OS/360 released with 1000 known bugs
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OS History

Phase 5: Interactive Timesharing

Hardware: cheap Humans: expensive

• Terminals are cheap

All users interact with the system at once,
debugging becomes a lot easier, process
switching occurs much more frequently

• Memory is cheap — programs and data go on-line

• UNIX simplifies Multics so it can be built

• New OS services: shell, filesystems, rapid
process switching, virtual memory

New problems: response time & thrashing 23



OS History

Phase 6: Personal Computing

Hardware: very cheap Humans: expensive

• Computers are cheap, so put one in each terminal

• Make the OS simple (again) by getting rid of
support for multiprogramming, concurrency, and
protection...

Did not really work; e.g.,  Microsoft had to put
all this functionality back into its OS

With distributed computing & networking, we
still want to share resources, but now we want
to share across machines

24



OS History

Phase 7a: Parallelism

Hardware: very cheap Humans: expensive

• Increased processing demands lead to parallelism

• In parallel systems, multiple processors are in the
same machine, sharing memory, I/O devices,
clock, ...

• In distributed systems, multiple processor
communicate via network

Advantages: increased performance, increased
reliability,       sharing of specialized resources
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OS History

Phase 7b: Real-Time Systems

Hardware: very cheap Humans: expensive

• Computers control physical machines or provide
high-quality interaction

e.g., virtual reality

• Timing requirements provide deadlines by when
tasks must be accomplished

• Hard vs. soft real-time:

Hard real-time OS must meet timing
requirements (so omit features)

Soft real-time OS allows deadlines to be
missed 26



OS History

Phase 7c: Embedded Systems

Hardware: very, very cheap Humans: expensive

• Your car may have dozens of processors

• Severe processing constraints ⇒  no OS...

• Programmer creates own OS abstractions
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History Conclusions

• Different environments demand different designs

• Many abstractions nevertheless work across
many environmets
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