Allocator with Implicit Free List and Coalescing

Current allocator works... performance!?

Utilization

Can create too much fragmentation

Throughput

Can take a long time to find a block

1-

p2

Choosing a Free Block

[%
o>

|—-|o

malloc (1) E/g; 3/3] [3/3

W
o>

|—-|o

Choosing a Free Block

226 63 (34 40
a
p2 = malloc(l) Ligé 33 33 [34 | 40
x__ 7

p4 = malloc (4)

First fit: Use (and possibly split) the first block that works

danger of fragmentation

6-

7

p2

Choosi
oosing a Free Block

N
N
[o)
o
w

[%
o>

|—-|o

m
alloc (1) 2/26
6 63

W
|—-|.h

|—-|o

Choosing a Free Block

N
N
0)
o)
w
W
o i
1N
|—-|o

P2 = malloc (1) 22|16 63 34 40
'
pd = malloc(4) L%vgé 63 34 | 40
|

Best fit: Use (and possibly split) the smallest block that works

usually reduces fragmentation

9-10

First-Fit Implementation

Our current implementation is first-fit:

while (GET SIZE (HDRP(bp)) '= 0) {
if (!GET_ALLOC (HDRP (bp))
&& (GET_SIZE (HDRP(bp)) >= new_size))
set allocated(bp, new _size);
return bp;
}
bp = NEXT BLKP (bp) ;
}

{

11

Best-Fit Implementation

A best-fit search:

void *best bp = NULL;

while (GET SIZE (HDRP(bp)) !'= 0) {
if (!'GET_ ALLOC (HDRP (bp))
&& (GET_SIZE (HDRP(bp)) >= new_size)) ({
if (!'best bp

best bp = bp;
}
bp = NEXT BLKP (bp) ;
}
if (best bp) {
set allocated(best bp, new size);
return best bp;

}

|| (GET_ SIZE (HDRP(bp)) < GET SIZE (HDRP (best bp))))

Copy

Trades throughput for utilization

12

Internal Fragmentation

P = mm malloc(8);
memset (p, 0, 8);

block header

block footer

I:I = byte

13

Internal Fragmentation

P = mm malloc(8);
memset (p, 0, 8);

\ 4

block header

0|0(0|0|0|0|0O|O

block footer

I:I = byte

S —
N

application payload

14

Internal Fragmentation

P = mm malloc(8);
memset (p, 0, 8);

v |:|=byte
block header 0/0/0/0|0|0(0]|0 block footer ‘

~C— i S — ——
N

application payload

Everything except the application payload reduces utilization

Internal fragmentation refers to space within an allocated
block that is unusable to the application

15-16

Internal Fragmentation

P = mm malloc(8);
memset (p, 0, 8);

\ 4

block header 0/0/0/0|0|0(0]|0 block footer ‘

i —r e, e

N

application payload

Sources of internal fragmentation:
* headers and footers
* empty space to maintain alignment

* empty space due to choice of fit

17

Encoding Header and Footer Information

I:I = byte

block_header 0/00|0(0(0|0O|O0 block_ footer

typedef struct {
size t size;
char allocated;
} block header;

typedef struct {
size t size;
int filler;

} block footer;

18-19

Encoding Header and Footer Information

[]=b

**| block header

block footer |

typedef size t block header;

typedef size t block footer;

yte

Since a block size is always a multiple of 16, low 4 bits are always 0

|dea: use the low bit to indicate allocation status

20-22

Encoding Header and Footer Information

I:I = byte

s/ block header (0/0/0|0(0(0(0|0 block footer |

typedef size t block header;

typedef size t block footer;

#define GET(p) (*(size t *) (p))

#define GET ALLOC(p) (GET(p) & Ox1)
#define GET SIZE (p) (GET (p) & ~OxF)

#define PUT (p, val) (*(size_t *) (p) = (val))

#define PACK(size, alloc) ((size) | (alloc))

23-24

Packing Demo

#include <stdio.h>
#include <stdlib.h>

#define GET (p) (*(size t *) (p))
#define PUT (p, val) (*(size_t *) (p) = (val))

#define GET ALLOC(p) (GET(p) & O0x1)
#define GET_SIZE (p) (GET (p) & ~OxF)

#define PACK(size, alloc) ((size) | (alloc))

int main() {
void *p = malloc(sizeof(size t));

PUT (p, PACK (48, 1));
printf ("%$1d %s\n",
GET SIZE (p),
(GET_ALLOC(p) ? "alloc" : "unalloc"));

Copy

25

Alignment

A smaller header can break our alignment strategy:

first bp

0x50000 0x50008
v v |:|=b)’te
block header |0(0/0(0/0(0|0|0 block footer |-

Solution:

* Make sure £irst bp has correct alignment

first bp

0x50008 0x50010
l i |:|=byte
block header [0/0(0/0/0(0|0|0 block footer |---

* Align total block size, not payload size

26-27

Even Smaller Headers and Footers

If the block size is constrained to be < 232

typedef int block header;

typedef int block footer;

#define GET (p) (* (int *) (p))

#define PUT (p, val) (*(int *) (p) = (val))

= byte
int [0/0/0/0(0(0/0/0 int

Allocator might treat very large blocks differently

28

Advanced: Footers Only for Unallocated Blocks

Our allocator needs to go backwards only for coalescing:

2[2[6 63 [34/ | a0
LN

|dea: record in block header whether previous block is allocated

) 52 3 6 60

10 1 11 10 01

o

Make sure block size is big enough for footer to be added

free (p2) = previous block is unallocated, so use PREV_BLKP

29-31

Advanced: Footers Only for Unallocated Blocks

Our allocator needs to go backwards only for coalescing:

226 63 (34 40
X~

0 -1 - |1

|dea: record in block header whether previous block is allocated

) 52 3 6 60

10 1 11 10 01

o

Make sure block size is big enough for footer to be added

free (p3) = previous block is allocated, so don’t try PREV_BLKP

32

Looking for an Unallocated Block

first bp

[
H|.>
[

el

..-|.>

..-|.>

..-|.h

33

g
(

H|.h

S

S

»-l.h

[
[
[
[
B
[
S
FS
S

»-l.h

»-|.h

e

44

Looking for an Unallocated Block

H|.h

S

S

S
[
[
[
[

B
[
S
FS
S

Hl'h

>a|.h

e

Finding an unallocated is a significant limitation on
throughput

45

Looking for an Unallocated Block

.4|.>

S

N~ N~
4 4 4 4

-
|

=

[
[
B
[
[
[

S

Finding an unallocated is a significant limitation on
throughput

Instead of searching through all blocks, keep a list of just
the free ones

The allocator will have an explicit free list instead of
an implicit free list

46

Make sure that every block has room for a pointer

Explicit Free Lists

replaces the application’s payload

first bp free list
a7
224 43433 |33 3| [3/3
L
free (p3)
first bp free 1list
N
224 43433 |33 3 |33

47-48

Explicit Free Lists

Make sure that every block has room for a pointer
replaces the application’s payload

first bp free list

N T
224 43\33 33 33 |[33//|]30
L
free (p3)
first bp free 1list
N
224 53133 33+33 (33/30

Explicit Free Lists

Make sure that every block has room for a pointer
replaces the application’s payload

first bp free list

N T
224 43\33 33 33 |[33//|]30
L
free (p3)
first bp free 1list
P
224 53133 33+33 (33/30

x__ 7

Free Lists and Coelescing

first bp free list
X ™
524 4/3],/33] [3/3[,[33] [3/3]/3/0
R 7 X~

51

Free Lists and Coelescing

first bp free list
X ™
gﬂgi 4 3/+/3[3 |33|s33 |33//30
R 7 X~

free (p4)

52

Free Lists and Coelescing

first bp free list
X\
524 23[,[3)3] [3]3,[33 ;5/§g
L \ X~

Coalesce next

free (p4) block: first,
remove it from

free list

Free Lists and Coelescing

first bp free list
XN
224 [[a)335] [33: 331 [33] 3
x__ x__~
free (p4)
first bp free list
XN
224 4 3///3 3| [3/13|]¢/3/3] [3/3

X7

Free Lists and Coelescing

first bp free list
XN
ZQA 43433 |33/9|33] |33//30
R x_“ X~
free (p4)
first bp free list
224 43/ /33 |39 90

55

Free Lists and Coelescing

first bp free list
X ™
ZQA 43‘33 33433 (33/30
R 7 X~

Coalesce previous
block: don’t add to
free list

free (p4)

first bp free list

=N

24 43/ /33 |39 90

56

Free Lists and Coelescing

first bp free list
XN
ZQA 43433 |33/9|33] |33//30
R x_“ X~
free (p4)
first bp free list
224 43/ /33 |39 90

Invariant: every unallocated block is on the free list

Free List Data Structure

Linked list not convenient!?

Use a doubly-linked lists

typedef struct list node {
struct list node *prev;
struct list node *next;
} list node;

void *mm malloc(size t size) {
int need size = max(size, sizeof(list node));
int new size = ALIGN(need size + OVERHEAD) ;

58-59

Free List Data Structure

Linked list not convenient!?

Use a doubly-linked lists

void *coalesce (void *bp) ({

if (prev_alloc && next alloc) {
add to free list((list node *)bp);
}

/* Case 1 */

60

Selecting from a Free List

First fit and best fit are still options with an explicit free list

More options:

LIFO — add to front of free list; take from front of list
a kind of first-fit that tends to promote locality

address ordered — pick block with lowest address
may reduce fragmentation

61-62

A segregated free list is an array of free lists, where

Segregated Free List

each list has objects of a particular size class

f ree_lists

M3 23] B3
/
—e_ 4 B 14 15
sl [[s] [5 5 5
6 6

10

63

A segregated free list is an array of free lists, where

Segregated Free List

each list has objects of a particular size class

f ree_lists

Map each size
to an array
element

/%'\ 23 23
—e_ 4 B 14 15
T8 B[]5] B
6 6
10 10

64

A segregated free list is an array of free lists, where

Segregated Free List

each list has objects of a particular size class

f ree_lists

Some lists
merge sizes

/%'\ 23 23
—e_ 4 B 14 15
T8 B[]5] B
6 6
10 10

65

Balanced Binary Tree

Instead of a free list, a free tree can support efficient
best-fit

free tree

T

6| /lele| |6

0 7

o|w
K
*\

_,
o
|
Pt
)
[e))

Building an Allocator with mmap

Our allocator implementation so far depends on a contiguous heap:

first bp
N T N
224 43 |33 33 33 33| 30
7~ R “

Allocators can use mmap instead of sbrk
using mmap works in more environments

Unlike sbrk, separate mmap calls don’t always return contiguous
addresses

67-68

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

first chunk

. —

o /2|2

H|.h
D
w
[}
|—l|w
W
(0]
W
|—l|w
W
w

(e

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

In each chunk from mmap, use first

£irst_¢ few bytes for chaining
) —
| /1224 43 |33 133 |33 (33 (3
A 1 1 0 1 1 1&/ 0

O

70

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

Can compute per-chunk £irst bp
first chur

as offset from page address
v —
o /12|24 43| 33 33 33 33 3
A 1 1 0 1 1 IK/ 0

(e

71

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

first chunk

l_ N

o| /12|24 43 (33 |33 |33 33
A1 1 0 1 1 1&/ 0

\ 4 "

..22109 19
A1

v N

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

first chunk

. —

— — | o 1 — o0 — 1

: 224 43 |33 33 33 (33 (30

Can remove empty page from page list and use munmap

v I —
o/ 2/219 190

A1 1
v e\

73

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

first chunk

v P

o| /12|24 43 (33 |33 |33 (33| (30
A 1 1 0 1 1 1&/ 0 1

4 N

74

Building an Allocator with mmap

Chain together mapped pages as mini sbrk-like allocators

Free list might span pages

first chunk free__list
l_ D W
0/ 224 | |4]3,33] |33] [3]3] [3/3],]3]0
A *___

75

Something Completely Different: Segregated Allocation

Each chunk of memory has uniform-sized blocks

“ How does £ree know an allocated block’s size!?

Based on the address: the allocator keeps a mapping of
address ranges to block sizes

76-77

Something Completely Different: Segregated Allocation

Each chunk of memory has uniform-sized blocks

Q How is unallocated space represented!?

Through a free list or chunk-specific bitmap

78

Something Completely Different: Segregated Allocation

Each chunk of memory has uniform-sized blocks

Q How is unallocated space selected for each allocation?

Any unallocated block will work within a chunk that holds the
block size

79

Something Completely Different: Segregated Allocation

Each chunk of memory has uniform-sized blocks

Q How finely is unallocated space tracked?

Block sizes must be rounded up to match some chunk’s
content

80

Something Completely Different: Segregated Allocation

Each chunk of memory has uniform-sized blocks

QWhen are more pages needed from the kernel?

When no chunk for the block size has any unallocated
blocks

81

