$$\pm M \times 2^{\pm E}$$

1 bit for
$$\pm k$$
 bits for $\pm E$ n bits for M

$$n$$
 bits for M

$$k = 8 \text{ or } 11$$

$$k = 8 \text{ or } 11$$
 $n = 23 \text{ or } 52$

Normalized: $\pm E$ is not its maximum or minimum value

$$1 \le M < 2$$

$$\pm$$
 0 < $\pm E + 2^{k-1} - 1 < 2^k - 1$

$$(M-1)2^n$$

$$\pm E = e + 1 - 2^{k-1}$$

$$M = 1 + f/2^n$$

Denormalized: $\pm E$ is its minimum value (which is negative)

$$0 \le M < 1$$

$$M2^n$$

$$\pm E = 2 - 2^{k-1}$$

()

$$M = f/2^n$$

Infinity: $\pm E$ is its maximum value

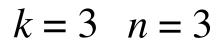
 $2^{k}-1$

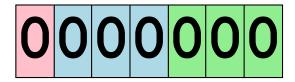
Not-a-Number: $\pm E$ is its maximum value

(many representations!)

 $2^{k}-1$

non-0





±=

$$\pm E =$$

$$M=$$

Normalized: $\pm E$ is not its maximum or minimum value

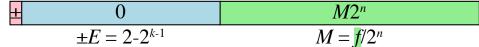
$$1 \le M < 2$$

$$\pm 0 < \pm E + 2^{k-1} - 1 < 2^{k} - 1 \qquad (M-1)2^{n}$$

$$\pm E = e + 1 - 2^{k-1} \qquad M = 1 + f/2^{n}$$

Denormalized: $\pm E$ is its minimum value (which is negative)

$$0 \le M < 1$$



Infinity: $\pm E$ is its maximum value

Not-a-Number: $\pm E$ is its maximum value

$$\pm$$
 2^k-1 non-0

$$k = 3$$
 $n = 3$

1001001

±=

$$\pm E =$$

$$M=$$

Normalized: $\pm E$ is not its maximum or minimum value

$$1 \le M < 2$$

$$\pm 0 < \pm E + 2^{k-1} - 1 < 2^{k} - 1 \qquad (M-1)2^{n}$$

$$\pm E = e + 1 - 2^{k-1} \qquad M = 1 + f/2^{n}$$

Denormalized: $\pm E$ is its minimum value (which is negative)

$$0 \le M < 1$$

$$\pm 0 \qquad M2^{n}$$

$$\pm E = 2 - 2^{k-1} \qquad M = f/2^{n}$$

Infinity: $\pm E$ is its maximum value

Not-a-Number: $\pm E$ is its maximum value

$$\pm$$
 2^k-1 non-0

±=

$$\pm E =$$

$$M=$$

Normalized: $\pm E$ is not its maximum or minimum value

$$1 \le M < 2$$

$$\pm 0 < \pm E + 2^{k-1} - 1 < 2^{k} - 1 \qquad (M-1)2^{n}$$

$$\pm E = e + 1 - 2^{k-1} \qquad M = 1 + f/2^{n}$$

Denormalized: $\pm E$ is its minimum value (which is negative)

$$0 \le M < 1$$

$$0 \qquad M2^{n}$$

$$\pm E = 2 - 2^{k-1} \qquad M = f/2^{n}$$

Infinity: $\pm E$ is its maximum value

Not-a-Number: $\pm E$ is its maximum value

$$\pm$$
 2^k-1 non-0

0010100

±=

$$\pm E =$$

$$M=$$

Normalized: $\pm E$ is not its maximum or minimum value

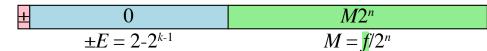
$$1 \le M < 2$$

$$\pm 0 < \pm E + 2^{k-1} - 1 < 2^{k} - 1 \qquad (M-1)2^{n}$$

$$\pm E = e + 1 - 2^{k-1} \qquad M = 1 + f/2^{n}$$

Denormalized: $\pm E$ is its minimum value (which is negative)

$$0 \le M < 1$$



Infinity: $\pm E$ is its maximum value

Not-a-Number: $\pm E$ is its maximum value

$$\pm$$
 2^k-1 non-0

$$k = 3$$
 $n = 4$

0000010

±=

$$\pm E =$$

$$M=$$

Normalized: $\pm E$ is not its maximum or minimum value

$$1 \le M < 2$$

$$\pm 0 < \pm E + 2^{k-1} - 1 < 2^{k} - 1 \qquad (M-1)2^{n}$$

$$\pm E = e + 1 - 2^{k-1} \qquad M = 1 + f/2^{n}$$

Denormalized: $\pm E$ is its minimum value (which is negative)

Infinity: $\pm E$ is its maximum value

Not-a-Number: $\pm E$ is its maximum value

$$2^{k}$$
-1 non-0